Your Global Automat jon Partner . une.(

Compact RFID Interface

nstruct ions for Use

2 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Contents

V01.01|2019/05

About these Instructions

5
1.1 Target groups 5
1.2 Explanation of symbols used 5
1.3 Other documents 5
1.4 Feedback about these instructions 5
Notes on the Product 6
2.1 Product identification 6
2.2 Scope of delivery 6
23 Legal requirements 6
24 Manufacturer and service 6
For Your Safety 7
3.1 Intended use 7
3.2 General Safety Notes 7
Product Description 8
4.1 Device overview 8
4.1.1 Operating elements 8
4.2 Properties and features 8
4.3 Operating principle 9
4.4 Functions and operating modes 9
44.1 Linux distribution — Software components 9
4.5 USB Host Port 9
4.6 Technical Accessories 9
Mounting 10
5.1 Mounting the device outdoors 10
5.2 Grounding the device 11
5.2.1 Grounding and shielding concept 11
52.2 Grounding the device (FG) 12
Connection 13
6.1 Connecting the modules to Ethernet 13
6.2 Connecting the power supply 14
6.3 Connecting RFID read/write heads 15
6.4 Connecting digital sensors and actuators 16
Commissioning 17
7.1 Setting the IP address 17
7.1.1 Setting the IP address via switches at the device 17
7.1.2 Setting the IP address via the Turck Service Tool 19
7.2 Programming RFID channels 20
7.2.1 GPIOs of the RFID channels — Overview 21
7.2.2 Adapt slave controller via script 22
723 Programming RFID channels with Python 3 24
724 Programming RFID channels with Node.js 25
725 Programming RFID channels with C or C++ 26
7.3 Programming digital channels (DXP) 28
7.3.1 GPIOs of the DXP channels - Overview 28

3

Contents

10
11

12

13
14
15
16

732 Setting DXP functions via script

733 Programming DXP channels with Python 3

734 Programming DXP channels with Node.js

735 Programming DXP channels with C or C++

7.4 Programming LED functions

7.4.1 LEDs - Overview

74.2 Setting LED functions via a script

743 Programming LED functions with Python 3

744 Programming LED functions with Node.js

7.4.5 Programming LED functions with C or C++

7.5 Creating a C application

7.6 Starting the application automatically (Autostart)
7.6.1 Autostart — Creating the configuration file (unit file)
7.6.2 Example: Using the unit file

7.6.3 Activating the unit file

7.7 Managing access rights

7.8 Installing Python packages

7.8.1 Example: Installing the Python module

Setting

Operation

9.1 LEDs

9.2 Reset device (Reset)

Troubleshooting

Maintenance

11.1 Executing the firmware update via the USB interface
11.2 Carrying out a firmware update via the console
11.2.1 Example: Carrying out a firmware update with WinSCP and PUTTYcccccoeveueeen.
Repair

12.1 Returning devices

Disposal

Technical Data

Appendix: Declaration of Conformity

Appendix: Example - “HelloGP1O” for Node.js

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

29
30
32
34

37
37
37
38
39
40

141

42
42
43
43

43

44
44

47

48
48
48

49

50
50

50
51

57
57

57
58
60
61

1 About these Instructions

These operating instructions describe the structure, functions and the use of the product and
will help you to operate the product as intended. Read these instructions carefully before using
the product. This is to avoid possible damage to persons, property or the device. Retain the in-
structions for future use during the service life of the product. If the product is passed on, pass
on these instructions as well.

1.1 Target groups

These instructions are aimed a qualified personal and must be carefully read by anyone
mounting, commissioning, operating, maintaining, dismantling or disposing of the device.

1.2 Explanation of symbols used
The following symbols are used in these instructions:

DANGER
DANGER indicates a dangerous situation with high risk of death or severe injury if
not avoided.

WARNING
WARNING indicates a dangerous situation with medium risk of death or severe in-
jury if not avoided.

CAUTION
CAUTION indicates a dangerous situation of medium risk which may result in minor
or moderate injury if not avoided.

NOTICE
NOTICE indicates a situation which may lead to property damage if not avoided.

NOTE
NOTE indicates tips, recommendations and useful information on specific actions
and facts. The notes simplify your work and help you to avoid additional work.

CALLTO ACTION
This symbol denotes actions that the user must carry out.

RESULTS OF ACTION
This symbol denotes relevant results of actions.

Y EE B PP

1.3 Other documents

Besides this document the following material can be found on the Internet at www.turck.com:
Data sheet
EC Declaration of Conformity

14 Feedback about these instructions

We make every effort to ensure that these instructions are as informative and as clear as pos-
sible. If you have any suggestions for improving the design or if some information is missing in
the document, please send your suggestions to techdoc@turck.com.

V01.01|2019/05 5

http://www.turck.com
mailto:techdoc@turck.com

Notes on the Product

2

2.2

2.3

24

Notes on the Product

Product identification
These instructions apply to the following compact RFID interfaces:
TBEN-L4-4RFID-8DXP-LNX
TBEN-L5-4RFID-8DXP-LNX

Scope of delivery

Compact RFID interface
Closure caps for M12 connectors
Quick Start Guide

Legal requirements
The device is subject to the following EC directives:

2014/30/EU (electromagnetic compatibility)
2011/65/EU (RoHS Il Directive)

Manufacturer and service
Hans Turck GmbH & Co. KG
Witzlebenstralle 7
45472 Muelheim an der Ruhr
Germany

Turck supports you with your projects, from initial analysis to the commissioning of your applic-
ation. The Turck product database contains software tools for programming, configuration or
commissioning, data sheets and CAD files in numerous export formats. You can access the
product database at the following address: www.turck.en/products

For further inquiries in Germany contact the Sales and Service Team on:

Sales: +49 208 4952-380
Technology: +49 208 4952-390

Outside Germany, please contact your local Turck representative.

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

3 For Your Safety

The product is designed according to state-of-the-art technology. However, residual risks still
exist. Observe the following warnings and safety notices to prevent damage to persons and
property. Turck accepts no liability for damage caused by failure to observe these warning and
safety notices.

3.1 Intended use

The devices are intended for use in the industrial sector.

The TBEN-L...-4RFID-8DXP-LNX... block module is a programmable RFID interface for use in the
Turck RFID system. The Turck RFID system is used for the contactless exchange of data between
atag and a read/write head in object or product identification applications. Four RFID channels
are provided for connecting BL ident® read/write heads. Eight configurable digital channels are
also provided. The interfaces communicate via TCP/IP with third party systems such as ERP sys-
tems.

The devices may only be used as described in these instructions. Any other use is not in accord-
ance with the intended use; Turck accepts no liability for any resulting damage.

3.2 General Safety Notes

The device may only be assembled, installed, operated, parameterized and maintained by
professionally-trained personnel.

The device may only be used in accordance with applicable national and international regu-
lations, standards and laws.

The device only meets the EMC requirements for industrial areas and is not suitable for use
in residential areas.

V01.01 | 2019/05 7

Product Description

4 Product Description

The devices are designed with a fully encapsulated housing with degree of protection IP67/
IP69K. Four RFID channels are provided for connecting read/write heads. It is also possible to
connect sensors and actuators via eight digital I/O channels, which can be configured as inputs
or outputs as required. The terminals for the read/write heads and for digital I/Os are M12 sock-
ets. An M12 socket is provided for the Ethernet connection. The plug connectors are 4-pin
(TBEN-L4) or 5-pin (TBEN-L5) 7/8" female connectors.

4.1 Device overview

P1 @G @ a c xi
o ® =
HEH I.O.I.O.I.O.I.O.I

604 63
§lLHe © © © |@

X2 ’

‘ i 218
- 2305

Fig. 1: Dimensions

4.1.1 Operating elements

The devices are provided with the following operating elements:
Rotary coding switches and DIP switch for setting the IP address
SET button for activating the write accesses of the USB Host port functions

4.2 Properties and features
TCP/IP
Freely programmable compact module based on Linux
Programming languages C, C++, NodelJS, Python
APl and SDK available on request
Implementation of the protocol for the read/write heads required
4 channels with M12 connector for RFID
8 configurable digital channels as 2 A pnp inputs and/or outputs
Multiple LEDs for status display
Integrated Ethernet switch enables line topology
10 Mbps/100 Mbps transfer rate
Glass fiber reinforced housing
Shock and vibration proof
Fully encapsulated module electronics
Degree of protection IP65/IP67/IP69K

8 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

43 Operating principle

The RFID interfaces connect the RFID system with other systems that communicate via TCP/IP
(e.g. ERP systems). The interfaces are provide with an Ethernet interface and RFID interfaces.

The RFID system can be linked to a third-party system, such as an ERP system, via the TCP/IP in-
terface. The read/write heads are connected to the interfaces via the RFID interfaces. The inter-
faces can also process sensor and actuator signals via 8 configurable digital channels.

44 Functions and operating modes

HF and UHF read/write heads can be connected to the RFID channels. Parallel operation of HF
and UHF read/write heads on the same device is also possible.

Sensors and actuators can be connected to the configurable digital channels. Up to four 3-wire
PNP sensors or four PNP DC actuators with a maximum output current of 2 A per output can be
connected. The Linux operating system enables the device functions to be programmed with C,
C++, NodelS or Python. It is also possible to integrate middleware functions on the device.

4471 Linuxdistribution — Software components
The Linux distribution of the device contains the following software components:
SSH
SFTP
HTTP
IBTP
MTXP
DHCP
SNTP
Node.js 6.9.5 (LTS)
Python 3.x

45 USB Host Port

The device is provided with a USB Host port for connecting USB memory sticks. The USB Host
port is a USB2.0 A socket. The firmware of the devices can be updated via the USB interface.
Memory expansion via the USB Host port is not possible.

4.6 Technical Accessories

Accessories for mounting, connecting and parameterizing can be found in product database or
the Accessories List for TBEN (D301367) under www.turck.com. The accessories are not part of
the scope of delivery.

V01.01|2019/05 9

http://www.turck.com

Mounting

5 Mounting

The device must be attached to a level, pre-drilled and grounded mounting surface.

» Attach the module to the mounting surface with two M6 screws. The maximum tighten-
ing torque for the screws is 1.5 Nm.

M6 (2x)
max. 1.5 Nm

Fig. 2: Fixing the device to the mounting plate

5.1 Mounting the device outdoors

The device is UV-resistant according to DIN EN ISO 4892-2. Direct sunlight can cause material
abrasion and color changes. The mechanical and electrical properties of the device are not af-
fected.
» To avoid material abrasion and color changes: Protect the device from direct sunlight,
e.g. by using protective shields.

10 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

52 Grounding the device

52.1 Grounding and shielding concept
The grounding and shielding concept of the TBEN-L modules enables the separate grounding
of the fieldbus and I/0 section.

Fig. 4: Grounding components

The grounding strip (1) on the M12 plug connectors for the fieldbus connection (P1, P2) con-
nects the shield of the fieldbus cables. The metal ring (2) is fitted underneath the grounding
strip and connects the functional ground of the 7/8” plug connectors (Pin 3) for the power sup-
ply with the functional ground of the M12 plug connectors (Pin 5) for connecting the read/
write heads, sensors and actuators. A metal screw (3) connects the device with the reference
potential of the system.

V01.01 | 2019/05 11

Mounting

522 Grounding the device (FG)
Grounding strip and metal ring are connected to each other. A fixing screw through the bottom
mounting hole of the module connects the shield of the fieldbus cables with the functional
ground of the power supply and connected devices as well as the reference potential of the
system. If a common reference potential is not required, remove the grounding clip to discon-
nect the fieldbus shield or fasten the module with a plastic screw.

Removing the grounding clip

» Lever up the grounding strip with a flat slot-head screwdriver and remove.

Fig. 5: Removing the grounding clip

Mounting the grounding clip

» Use ascrewdriver to insert the grounding clip between the fieldbus connectors so that
contact is made with the metal housing of the plug connectors.

= The shield of the fieldbus cables is connected to the grounding clip.

Fig. 6: Mounting the grounding clip

12 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

6 Connection

6.1 Connecting the modules to Ethernet

The connection to Ethernet is realized via the integrated auto-crossing switch is done using two
4-pole, D-coded M12 x 1-Ethernet-connectors. The maximum tightening torque is 0.6 Nm.

plciciclcl@

O .)
L@ @ e ® |
Fig. 7: M12 Ethernet connector for the connection to Ethernet

» Connect the device to Ethernet according to the pin assignment below.

<
(2) 1=TX+
2=RX+
4 4=RX-
flange = FE
P1,P2

Fig. 8: Pin assignment Ethernet connectors

V01.01 | 2019/05

13

Connecting

6.2

14

Connecting the power supply

For the connection to the power supply, the device has two 5-pin 7/8" connectors. The power
supply connectors are designed as 4-pole (TBEN-L4) or 5-pole (TBEN-L5) 7/8" connectors. V1
and V2 are galvanically isolated. The maximum tightening torque is 0.8 Nm.

Fig. 9: 7/8" connector for connecting the supply voltage

» Connect the device to the voltage supply according to the pin assignment below.

-

9

X1

<
1RD =24VDC V2

3 2GN =24VDC V1 3/0 o\!
4 3WH =GND V1 4\°_9/)

4BK =GND V2

X2

Fig. 10: TBEN-L4-... — Pin assignment power supply connectors

-

3
&
5\

X1

28U =GNDVI =
2 3GNYE = FE 24
14BN =24VDCVI 1

<
1BK =GNDV2 3

5
5WH =24VDCV2

X2

Fig. 11: TBEN-L5-... — Pin assignment power supply connectors

Connector Function

X1 Power feed

X2 Continuation of the power to the next node

V1 System supply: Power supply 1 (incl. supply of electronics)
V2 Load voltage: Power supply 2

NOTE

The system voltage (V1) and the load voltage (V2) are supplied and monitored sep-
arately. In case of an undercut of the admissible voltage, the connectors are
switched-off according to the module's supply concept. In case of an undervoltage
at V2, the LED PWR changes from green to red. In case of an undervoltage at V1, the
LED PWR is turned off.

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

6.3 Connecting RFID read/write heads
The device has four 5-pin M12 plug connectors for connecting RFID read/write heads. The max-
imum tightening torque is 0.8 Nm.
» Connect the read/write heads to the device as per the pin layout shown below.

<

2 1=Vaux1

5 2=DataB
1{000)3 3=GNDVI

o 4=DataA
504 5 = FE/Shield

Fig. 12: RS485 - Pin layout of the read/write head connections

<

2 1=BN (+)

° 2 =BK (Data)
1 3 3=BU (GND)
5 2 4 = \WH (Data)

5 = shield

Fig. 13:.../52500 connection cables - Pin layout of the read/write head connections

<

2 1=BN (+)

° 2 = WH (Data)
1 3 3=BU (GND)
5 4 4 =BK (Data)

5 = shield

Fig. 14:.../52501 connection cables - Pin layout of the read/write head connections

e
2 1=RD (+)
) 2=BU (Data)
'I 3 3=BK (GND)
o 4=WH (Data)
5 4 5 = shield

Fig. 15:.../52503 connection cables - Pin layout of the read/write head connections

V01.01|2019/05 15

Connecting

6.4 Connecting digital sensors and actuators

The device has four 5-pin M12 plug connectors for connecting digital sensors and actuators.
The maximum tightening torque is 0.8 Nm.

®
E olo

Fig. 16: M12 plug connector for connecting digital sensors and actuators

=

OO000

» Connect the sensors and actuators to the device as per the pin layout below.

< 3BU-

2 e, seABCT S
577 éz FE’na JWHT gfnsor
C2..C3 3BU - [|Actuator
€ C2..C3
Fig. 17: Connections for digital sensors and ac- Fig. 18: Connections for digital sensors and ac-
tuators - Pin layout tuators — Wiring diagram

The channels are assigned to the slots as follows:

Channel Slot Pin
DXP8 Ch8 c4 4
DXP9 Ch9 Cc4 2
DXP10 Ch10 c5 4
DXP11 Ch11 c5 2
DXP12 Ch12 C6 4
DXP13 Ch13 (@) 2
DXP14 Ch14 7 4
DXP15 Ch15 7 2

16 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

/ Commissioning

The Linux operating system enables the device functions to be programmed with C, C++,
NodelJS or Python.

Additional software tools (e.g. PuTTY) are required to access the device via the console. A file
exchange between the device and a PC can be used, e.g. via WinSCP. The following login data
is stored on the device by default:

User: user

Password: password

NOTE
ﬂ The read/write head protocol is not implemented by default. The protocol must be
implemented by the user.

7.1 Setting the IP address

The IP address can be set via two decimal rotary coding switches and DIP switches on the
device, via the web server or via the Turck Service Tool.

7.1.1 Setting the IP address via switches at the device

The IP address can be set via two decimal rotary coding switches and the DIP switch "Mode" on
the device. The switches are located under a cover together with the USB ports and the SET
button.

USB Host

Fig. 19: Switches for setting the IP address

Open the cover above the switches.

Set the rotary coding switch to the desired position according to the table below.
Set DIP switch "Mode" to the desired position according to the table below.
Execute a power cycle.

NOTICE! When the cover over the rotary coding switches is open, protection class IP67 or
IP69K is not guaranteed. Damage to the device due to invasive foreign material or liquids
Tightly close the cover above the switches.

vVvvyyvwvyy

V01.01 | 2019/05 17

Commissioning

Addressing options

Setting option

Default address

The IP address of the devices can be set in different ways. The following addressing options can

be selected via the switches on the device. Changes to the settings become active after a

voltage reset.

DIP switch “MODE” Rotary coding
switches

0 00

Description

IP address: 192.168.1.100
Subnet mask: 255.255.255.0
Gateway: 192.168.1.1

Rotary mode

In rotary mode, the last byte of the IP address can
be set manually at the gateway. The other network
settings are stored in the non-volatile memory of
the gateway and cannot be changed in rotary
mode. Addresses from 1...99 can be set.

DHCP mode

In DHCP mode, the IP address is automatically as-
signed by a DHCP server in the network. The subnet
mask assigned by the DHCP server and the default
gateway address are stored non-volatile in the
memory of the gateway DHCP supports 3 types of
IP address assignment:
Automatic address assignment: The DHCP server
assigns a permanent IP address to the client.
Dynamic address assignment: The IP address as-
signed by the server is only reserved for a certain
period of time. After this time has elapsed or
after the explicit release by a client, the IP ad-
dress is reassigned.
Manual address assignment: A network adminis-
trator assigns an IP address to the client. In this
case, DHCP is only used to transmit the assigned
IP address to the client.

PGM Mode

In PGM mode, the complete IP address is assigned
manually via the Turck Service Tool, FDT/DTM or via
a web server. In PGM mode, the set IP address and
the subnet mask are stored in the memory of the
gateway. All network settings (IP address, subnet
mask, default gateway) are taken from the internal
EEPROM of the module.

PGM DHCP mode

In PGM-DHCP mode, the gateway sends DHCP re-
quests until it is assigned a fixed IP address. The
DHCP client is automatically deactivated if an IP ad-
dress is assigned to the gateway via the DTM or a
web server.

F_Reset

The F_Reset mode sets all device-settings back to
the default values and deletes all data in the
device's internal flash. The following values are re-
set or deleted:

IP address and subnet mask

Parameters

Restore

IP address: 192.168.1.100

18

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

7.1.2 Setting the IP address via the Turck Service Tool
» Connect the device to a PC via the Ethernet interface.
» Launch the Turck Service Tool.
» Click Search or press F5.

% . [O.en. @ X
Search... (F3) | Change (F2) Wink (F3) Actions (F4} Clipboard Language Expert view OFF Clnsel
Mo. MALC address Mame IP address Metmask Gateway Mode Device Version Adapter BEEF Protocol

Dricken Sie "Suchen”... um Gerdte zu finden.
Fig. 20: Turck Service Tool - Start screen

The Turck Service Tool displays the connected devices.

© . [@O.EeN . @ EIP X

Search... (F5) | Change (F2) Wink (F3) Actions (F4) Clipboard Language Expert view ON | Start DHCP (F6) Configuration (F7) ARGEE (F8) Clnsel

MNo. MAC address . MName |P address Metmask Gateway Mode Device Version Adapter ARGEE Protocol
192.168.1.100 255.265.256.0 192.168.1.1 ROTARY TBEN-L5-4RFID-BDXP-LNX 1.0.1.0 152.168.1.1 Turchk

=1 00:0746:1FF7:1B

Fig. 21: Turck Service Tool - Found devices

» Click the required device.
» Click Change or press [F2].

NOTE
Clicking the IP address of the device opens the web server.

V01.01 | 2019/05 19

Commissioning

» Change the IP address and if necessary the network mask and gateway.

» Accept the changes by clicking Set in device.

00:0746FF:A4:1A |

|P addrezs

192.168.1.100)

Metmask Gateway

Status messages:

1192.168.1.1

i Set in device

Fig. 22: Turck Service Tool - Changing the device configuration

7.2 Programming RFID channels

The RFID channels of the device are designed as RS485 serial interfaces. The interface operates

in half-duplex mode. The direction of the control signal must be adjusted to switch between
send and receive.

An external peripheral device is integrated in the RFID interface in order to communicate with
connected devices. A separate slave controller is used for handling the messages exchanged
between the interface and the read/write head. The slave controller must be adapted to the
Linux settings via a script.

The serial interfaces are as follows:

COM interface TTY Channel
como tty03 Ident 0
COoM1 tty04 Ident 1
com2 tty01 Ident 2
COoMm3 tty02 Ident 3

20

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

7.2.1 GPIOs of the RFID channels — Overview

The RFID channels can be programmed via the GPIOs. The GPIOs are located under the follow-

ing path:
/sys/class/gpio/...
NOTE
When biasing is switched on, the polarity must also be set. For this use the
GPIOs for the polarity change.
Polarity change and biasing must be permitted in the Linux settings.
Function CcoOM GPIO Possible values
Switch power/AUX COMO gpio493 0: Switch off
COM1 gpio440 1: Switch on
COM2 gpio441
com3 gpio442
Biasing A-GND_B-5V_1_1 COMO_I gpio461 0: Switch off
invertieren COM1_| gpio469 1: Switch on
com2_| gpio450
COoM3_| gpio453
Biasing A-5V_B-GND_1_1in COMO_N gpio462 0: Switch off
Normalmodus setzen COM1_N gpio470 1: Switch on
COM2_N gpio449
COM3_N gpio454
Polarity change COMO gpio456 0: normal
(RxD = TxD) COM1 gpio464 1: Inverse
COM2 gpio447
COM3 gpio451
Switch on RS485 bus ter- ~ COMO gpio460 0: Switch off
minating resistor COM1 gpio468 1: Switch on
COM2 gpio448
Ccom3 gpio452

V01.01|2019/05

21

Commissioning

Adapt slave controller via script

A script is installed on the device for adapting the slave controller. The script is located under

the following path:
/TURCK/scripts/serial.sh

The script can be used with the following syntax:

sh serial.sh device cmd [param]

Example of using the script:
sh serial.sh COMO send

The following parameter values can be used:

"Hello World!"

cmd param
baud Transfer rate, e.g. 9600
term ON/OFF
bias ON/OFF
swap ON/OFF
send Message
recv
vaux ON/OFF
sethw
sets

Script sh serial.sh — Overview of the commands
Command Function

sh serial.sh COMx baud baudrate

Sets the transfer rate of the Linux system and
the slave controller.

sh serial.sh COMx term ON/OFF

Switches the RS485 terminating resistor on or
off.

sh serial.sh COMx bias ON/OFF

Switches the biasing on or off.

sh serial.sh COMx swap ON/OFF

Switches the swapping function on or off.

sh serial.sh COMx send "message”

Sends a data string to a connected read/write
head.

sh serial.sh COMx recv

Receives messages from a connected read/
write head.

sh serial.sh COMx vaux ON/OFF

Switches the auxiliary voltage VAUX on or off.

sh serial.sh COMx sethw

Adapt slave controller to Linux settings

sh serial.sh COMx seths [baudratelk[databits]
[parityl[stopbits]

Adapt settings for slave controller and Linux
settings

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Example: Adapt settings for slave controller and Linux system via script

The settings for the slave controller and the Linux system can be adapted via the sets function
of the script. The function can be used with the following syntax:
sh serial.sh COMx sets (Baudrate)k (databits) (parity) (stopbits)

Example: Set transfer rate of 115200 kbaud, 8 bit, without parity, 1 stop bit
serial.sh COM1 115.200k8nl

The possible values for the individual parameters are shown in the following table:

Transfer rate Bits Parity Stop bit
Parameter Meaning Parameter Meaning Parameter Meaning Parameter Meaning
9600 9600 kBaud 5 cs5 n None 1 1 stop bit
38400 38400 kBaud 6 cs6 e Even 2 2 stop bits
115200 115200 kBaud 7 cs7 o Odd

8 cs8

V01.01|2019/05

23

Programming RFID channels with Python 3
The following examples illustrate the programming of the RFID interface with Python 3.

Example 1: Using the “pySerial” module

import serial # from module pySerial
from os import system as sh # for use of the sh-script

open serial interface on port 0 and set a timout of 8 seconds
seri = serial.Serial ("/dev/COMO", timeout=8)

change settings

seri.baudrate = 115200 # set the baudrate of port COMO to 115200
seri.parity ='N' # set no parity for port COMO

seri.bytesize = 7 # set the byte size for a sign to 7 for port
COMO

seri.stopbits = 1 # set stopbits to 1 for port COMO

sh ('/TURCK/scripts/serial.sh COMO sethw')

seri.write (bytearray.fromhex ("aa 07 07 49 00 41 23")) # writes a
bytestream
print (seri.readline()) # reads incoming message as ascii

Example 2: Using the “periphery” module

from periphery import Serial
from os import system as sh # for use of the sh-script

Open /dev/COM1 with baudrate 115200, and defaults of 8N1, no
flow control

serial = Serial ("/dev/COM1", 115200)

write a bytestream serial.write (bytearray.fromhex ("aa 07 07 49
00 41 23M))

Read up to 128 bytes with 500ms timeout
buf = serial.read (128, 0.5)

print (buf)
print ("read %d bytes: %s " % (len(buf), buf))

serial.close ()

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

7.24 Programming RFID channels with Node js

The following examples illustrate the programming of the RFID interface with Node.js. Further
information on Node.js and the Node.js packages is provided at:

© https://nodejs.org

© https://www.npmjs.com/

V01.01 | 2019/05

initialize the serialport-v5 box
var SerialPort=require('serialport-v5'");

initialize the shelljs box
var shell = require('shelljs');

initialize COML
coml = new SerialPort('/dev/COM1"'") ;

adjust hardware to the System settings
shell.exec ('sh /TURCK/scripts/serial.sh COMO sethw');

read up to 6 bytes

coml.on ('readable', function () {

console.log('\nincomming Data coml:', coml.read(6));

1)

write buffer to COM1

const bufl = new Buffer ([0x01, 0x02, 0x03, 0x04, 0x05, O0x11]);
coml.write (bufl, console.log('message written from coml: ' +
bufl.toString('hex')));

read line as ascii

const readline = SerialPort.parsers.Readline;

const parser = new readline();

coml.pipe (parser);

parser.on('data', console.log);

write ascii com2.write('Let us talk together...\n');

25

Programming RFID channels with C or C++

The following examples illustrate the programming of the RFID interface with Ansi C or C++.
#include <stdio.h>

#include <stdlib.h>

#include <termios.h>

#include <fcntl.h>

// initialize function (use extern for C++)

ssize t read (int fd, void * buf, size t nbytes) wur;
ssize t write (int _ fd, const void * buf, size t n) _ wur;
int close (int _ fd);

int main (void) {
//choose Interface for connection
const char *Path = "/dev/COM2";
struct termios options;
int fd, count, 1 ;
unsigned char currentBuff[l];
unsigned char InBuff[255];
unsigned char *p InBuff = InBuff;
unsigned char Message[] = {0x48,0x65,0x6c,0x6c,0x6f};
if ((fd = open((Path), O RDWR | O NOCTTY)) != -1)
{
// Set serial Interface
tcgetattr (fd, &options);

cfsetspeed(&options, B9600);
cfmakeraw (&options);

options.c cflag |= CS8;

tcsetattr (fd, TCSANOW, &options);

system ("sh /TURCK/scripts/serial.sh COM2 sethw");

// write to Interface COM2

if ((write(fd, Message, sizeof (Message))) == -1)
{

printf ("not able to write...");

}

// read from Interface COM2
count = 0;

do
{

if ((count += read(fd, currentBuff, 1)) == -1)

printf ("can not read...");

*p InBuff = currentBuff[0];

p_InBuff++;
}while (currentBuff[0] != Oxfe);
// print:
p_InBuff -= count;

printf ("\nData count: %i",count+1l);
printf ("\nValues: \n");
for(i = 0; 1 <= count ; 1i++)

{

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

V01.01 | 2019/05

0.
ol

printf("%$.02x ", *p InBuff); //"\nReceived value
%.02x " p InBuff++;

}

// close the Interface
if ((close(fd)) == -1)
{

printf ("\n can not close interface");

}
else

printf ("can not open interface\n");
return EXIT SUCCESS;

27

Commissioning

7.3 Programming digital channels (DXP)

7.3.1 GPIOs of the DXP channels — Overview

The digital I/O channels (DXP) can be programmed as inputs or outputs via the GPIOs. The
GPIOs are located under the following path:

/sys/class/gpio/...
Channel Socket Type GPIO Possible values
DXP8 C4 Input 110 0: Input off (V)
1: Input on (24V)
Output 12 0: Output off (OV)
1: Output on (24V)
DXP9 Input 111 0: Input off (V)
1: Input on (24V)
Output 13 0: Output off (OV)
1: Output on (24V)
DXP10 Cc5 Input 112 0: Input off (V)
1: Input on (24V)
Output 47 0: Output off (0V)
1: Qutput on (24V)
DXP11 Input 113 0: Input off (OV)
1: Input on (24V)
Output 63 0: Output off (0V)
1: Output on (24V)
DXP12 c6 Input 114 0: Input off (OV)
1: Input on (24V)
Output 86 0: Output off (0V)
1: Output on (24V)
DXP13 Input 116 0: Input off (OV)
1: Input on (24V)
Output 87 0: Output off (0V)
1: Output on (24V)
DXP14 c7 Input 117 0: Input off (OV)
1: Input on (24V)
Output 88 0: Output off (0V)
1: Output on (24V)
DXP15 Input 7 0: Input off (OV)
1: Input on (24V)
Output 89 0: Output off (OV)

1: Output on (24V)

Setting the switchable VAUX power supply

Socket Type GPIO Possible values
c4 Output 495 0: VAUX off

cs Output 496 1: VAUX on

ce Output 497

c7 Output 498

28 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Setting the switchable VAUX power supply — Diagnostics

Socket Type GPIO Possible values

c4 Input 499 0: VAUX error-free

c5 Input 500 1: Error or overvoltage
VAUX

C6 Input 501 on VAU

c7 Input 502

7.3.2 Setting DXP functions via script

A script is installed on the device for setting the DXP channels. The script is located under the
following path:

/TURCK/scripts/dxp.sh

The script can be used with the following syntax:
sh dxp.sh DXPx [value]

The following example sets the value for the DXP8 channel to ON.
sh dxp.sh DXP8 1

Parameter Possible values

DXP8...DXP15 1: Switch on channel
0: Switch off channel

V01.01|2019/05 29

Commissioning

733 Programming DXP channels with Python 3

NOTE

ﬂ The speed of the data transmission depends on the configured block size and the
set transfer rate. The speed may possibly not be enough for time critical applica-
tions. To achieve faster data processing, the process can be set as a real-time pro-
cess.

The following example shows the programming of the digital I/0 channels with Python 3.

import sys
#GPIOs-> OUT: IN:
ports = ["47","112"]

write GPIO:
try:
set direction to write DXP
fo = open("/sys/class/gpio/gpio™ + ports[0] +"/direction",

"t
fo.write ("out")
fo.close()
write DXP:
f = open("/sys/class/gpio/gpio" + ports[0] +"/value", "w")
f.write("1")
f.close()
except:
export gpio if not done as yet
fl = open("/sys/class/gpio/export", "w")
fl.write(ports[0]) fl.close()
set direction to write DXP
fo = open("/sys/class/gpio/gpio™ + ports[0] +"/direction",
"t

fo.write ("out")

fo.close()

write DXP:

fw = open("/sys/class/gpio/gpio" + ports[0] +"/value", "w")
fw.write("1")

fw.close()

read GPIO:
try:
set direction to read DXP
fo = open("/sys/class/gpio/gpio™ + ports[l] +"/direction",

"W")
fo.write ("in")
fo.close()
set active low to get the right value...
fal = open("/sys/class/gpio/gpio" + ports[l] +"/active low",
"w")

fal.write("1")

fal.close()

read DXP: fr = open("/sys/class/gpio/gpio" + ports[l] +"/
value", "r")

val=fr.read()

fr.close()

30 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

print (val)

except:

export gpio if not done as yet

fl = open("/sys/class/gpio/export", "w")
fl.write(ports[1l])

fl.close()

set direction to read DXP

fo = open("/sys/class/gpio/gpio"™ + ports[l] +"/direction",

"W")

fo.write ("in")

fo.close()

set active low to get the right value...

fal = open("/sys/class/gpio/gpio" + ports[l] +"/active low",

"W")

V01.01 | 2019/05

fal.write("1")

fal.close()

read DXP:

fr = open("/sys/class/gpio/gpio" + ports[1l] +"/value", "r")
val=fr.read()

fr.close()

print (val)

31

7.34

32

Programming DXP channels with Nodejs

NOTE

ﬂ The speed of the data transmission depends on the configured block size and the
set transfer rate. The speed may possibly not be enough for time critical applica-
tions. To achieve faster data processing, the process can be set as a real-time pro-
cess.

The following examples illustrate the programming of the digital I/0 channels with Node.js.
Further information on Node.js and the Node.js packages is provided at:

= https://nodejs.org

= https://www.npmjs.com/

// initialize the onoff box
const Gpio = require('onoff') .Gpio;

function setGpioByInt (OUT, val) {
// switch from DXP to GPIO...
switch (OUT) {
case 8:
res = 12;
break;
case 9:
res = 13;
break;
case 10:
res = 47;
break;
case 11:
res = 63;
break;
case 12:
res = 86;
break;
case 13:
res = 87;
break;
case 14:
res = 88;
break;
case 15:
res = 89;

// initialize the GPIO just to write...

const DXP Write = new Gpio(res, "out");

// write the GPIO / DXP...

DXP Write.writeSync(val);

console.log('set Gpio '+ res + ' to ' + val);

function getGpio (IN) {
// switch from DXP to GPIO...
switch (IN) {
case "8":
res = 110;

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

https://nodejs.org
https://www.npmjs.com/

V01.01 | 2019/05

break;
case "9":
res = 111;
break;
case "10":
res = 112;
break;
case "11":
res = 113;
break;
case "12M:
res = 114;
break;
case "13":
res = 116;
break;
case "14":
res = 117;
break;
case "15":
res = 7;

// initialize the GPIO just to read...

const DXP Read = new Gpio(res, "in");

// set active low to get the right value...
DXP_Read.setActiveLow ('true');

// read the GPIO / DXP...

var res = DXP Read.readSync();
console.log('Gpio '+ r Pin + ' is: ' + res);
return res;

33

7.3.5

34

Programming DXP channels with C or C++
The following example shows the programming of the digital I/0O channels with Ansi C/C++.

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

// initialize function (use extern for C++)
int access(const char *pfad, int modus);

int main (void) {
//choose DXP / GPIO for connection

char GPIO IN FILE[] = "/sys/class/gpio/gpioll4";
char GPIO OUT FILE[] = "/sys/class/gpio/gpio86";
char input[2]; FILE *fh;
/ *
READ:
=== ==% /
if(access(GPIO IN FILE, F OK) == -1)
{
// file doesn't exist!
// export gpio...
if ((fh = fopen("/sys/class/gpio/export", "w")) != 0)
{
fputs ("114", th);
fclose (fh);
}
else
{
printf ("failed on export to read...\n");
printf ("result: %i \n", (int)fh);
return -1;
}
}
// set direction to read...
if ((fh =fopen("/sys/class/gpio/gpioll4/direction™, "w")) != 0)
{
fputs ("in", £h);
fclose (fh);
}
else
{
printf ("failed on setting direction to read...\n");
return -1;
}
// set active low to read...
if ((fh = fopen("/sys/class/gpio/gpioll4/active low", "w")) !=
0)

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

V01.01 | 2019/05

fputs ("1", £h) ;
fclose (fh);

}

else

{
printf ("failed on setting active low An")
return -1;

}

// read GPIO...

{
fputs ("86", th) ;
fclose (fh);

}

else

{

if ((fh = fopen("/sys/class/gpio/gpioll4d/value", "r")) != 0)
{
fgets (input, 2, fh) ;
fclose (fh);
printf ("Value: %c\n", input[0]);
}
else
{
printf("failed on reading An")
return -1;
}
/ *
WRITE
*/
if (access(GPIO OUT FILE, F OK) == -1)
{
// file doesn't exist
// export gpio...
if ((fh = fopen("/sys/class/gpio/export"™, "w")) != 0)

printf ("failed on export to write...\n");

printf ("result: %i \n", (int)fh);
return -1;

}
}

// set direction to read...

if((fh = fopen("/sys/class/gpio/gpio86/direction",
{
fputs ("out", th) ;
fclose (fh);
}
else

printf ("failed on setting direction to write.
return -1;

..\n");

35

36

// write GPIO...

if ((fh = fopen("/sys/class/gpio/gpio86/value", "w")) != 0)
{

fputs ((const char*)"1", fh);

fclose (fh);

}
else
{
printf ("failed on writing ...\n");
return -1;
}

return EXIT SUCCESS;

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

74 Programming LED functions

741 LEDs — Overview

The device is provided with three freely programmable LEDs. The LEDs can be programmed in-
dividually via read and write commands. The LEDs are mapped on the system under the follow-
ing path: “/sys/class/leds/..."

LED Color System name

APPL Green appl_green
Red appl_red

ERR Green err_green
Red err_red

RUN Green run_green
Red run_red

If the red and green of an LED are switched on at the same time, the LED is orange.

NOTE
During an ongoing firmware update the RUN-LED is used by the system.

742 Setting LED functions via a script

A script is installed on the device for setting the LEDs. The script is located under the following
path:

/TURCK/scripts/led.sh

The script can be used with the following syntax:
sh led.h led color [value]

The following example switches on the red APPL LED.
sh led.sh appl red 1

LED Possible color setting Possible values
ERR Green/red 1: Switch on LED
0: Switch off LED
RUN Green/red 1: Switch on LED
0: Switch off LED
APPL Green/red 1: Switch on LED

0: Switch off LED

V01.01|2019/05 37

743

38

Programming LED functions with Python 3
The following example shows the programming of the LED functions with Python 3:

import sys

import time

write red LEDs:

fw = open("/sys/class/leds/run red/brightness", "w")
fw.write("1")

fw.close ()

fw = open("/sys/class/leds/appl red/brightness", "w")
fw.write("1")
fw.close ()

fw = open("/sys/class/leds/err red/brightness", "w")
fw.write("1")
fw.close ()

Wait for 5 seconds
time.sleep (5)

write green LEDs:

fw = open("/sys/class/leds/appl green/brightness", "w")
fw.write("1")

fw.close ()

fw = open("/sys/class/leds/err green/brightness", "w")
fw.write("1")
fw.close ()

fw = open("/sys/class/leds/run green/brightness", "w")
fw.write("1")
fw.close ()

Wait for 5 seconds
time.sleep (5)

clean red LEDs:

fw = open("/sys/class/leds/run red/brightness", "w")
fw.write("0")

fw.close ()

fw = open("/sys/class/leds/appl red/brightness", "w")
fw.write("0")
fw.close ()

fw = open("/sys/class/leds/err red/brightness", "w")
fw.write("0")

fw.close ()

Wait for 5 seconds
time.sleep (5)

clean green LEDs:
fw = open("/sys/class/leds/appl green/brightness", "w")

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

fw.
fw.

fw

fw.
fw.

fw

fw.
fw.

write ("0")

close ()
= open("/sys/class/leds/err green/brightness", "w")
write ("0")

close ()
= open("/sys/class/leds/run green/brightness", "w")
write ("0")

close ()

744 Programming LED functions with Node.js

The following examples illustrate the programming of the LED functions with Node.js. Further
information on Node.js and the Node.js packages is provided at:

= https://nodejs.org

= https://www.npmjs.com/

V01.01 | 2019/05

//

initialize the onoff box

const Gpio = require('onoff') .Gpio;

//initialize the leds which are free for the user

appl green led = new LED('appl green');
appl red led = new LED('appl red');
error green led = new LED('err green');
error red led = new LED('err red');

run_green led

new LED('run green');

run_red led = new LED('run red');

39

https://nodejs.org
https://www.npmjs.com/

745

40

Programming LED functions with C or C++
The following example shows the programming of the LED functions with Ansi C/C++.

#include <stdio.h>
#include <stdlib.h>

// initialize function (use extern for C++)

char* strcpy(char* target, const char* source);

char* strcat (char* sl, const char* s2);

int main (void) {
// LEDs for the customer:
char *appl green led = "appl green";
char *appl red led = "appl red";

char *error green led = "err green";
char *error red led = "err red";
char *run green led = "run green";
char *run_red led = "run_red";

char *LED FILE = "/sys/class/leds/";
char *brightness = "/brightness";
FILE *fh;

char cur Str[50] = {0};
strcpy (cur Str, LED FILE);

// take LED which will shine:
strcat (cur Str, run red led);
strcat (cur Str, brightness);

//WRITE:
printf ("string to led: %s\n", cur Str);

// write LED...
if ((fh = fopen(cur Str, "w")) != 0)
{

// write "1" to switch on and "O" to switch of

fputs ((const char*)"0", fh);
fclose (fh);
}
else
{
printf ("failed on writing ...\n");
return -1;
}
return EXIT SUCCESS;

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

LED

7.5 Creating a C application

Requirements

The following components are required to create a C application:
Toolchain for Cortex A8
C program

Downloading a toolchain

The following toolchain is required for the Cortex A8 processor in order to cross compile a C
program:
OSELAS.toolchain-2014.12.0-arm-cortexa8-linux-gnueabihf-gcc-4.9.2-glibc-2.20-
binutils-2.24-kernel-3.16-sanitized
The toolchain is available to download at http://debian.pengutronix.de/debian.

Example: Creating the C program

» Create the “hello.c” file.

» Copy the following text to the file:
// hello.c
#include <stdio.h>

int main () {
printf ("Hello World!\n");
return 0;

» Create executable file with the following toolchain command:
/opt/OSELAS.Toolchain-2014.12.0/arm-cortexa8-linux-gnueabihf/
gcc-4.9.2-glibc-2.20-binutils-2.24-kernel-3.16-sanitized/bin/
arm-cortexa8-linux-gnueabihf-gcc -o helloExample hello.c

V01.01 | 2019/05 41

http://debian.pengutronix.de/debian

Commissioning

Example: Creating a C program via a make file

The “make” service program automates the creation of executable files from source code. C
programs can be compiled via “make”. This uses a make file which contains the rules for creat-
ing executable files.

The following example shows a simple make file:
all: helloExample

helloExample: hello.o
/opt/OSELAS.Toolchain-2014.12.0/arm-cortexa8-linux—-gnueabihf/

gcc-4.9.2-glibc-2.20-binutils-2.24-kernel-3.16-sanitized/bin/arm-

cortexa8-linux—-gnueabihf-gcc -o helloExample hello.o

hello.o: hello.c
/opt/OSELAS.Toolchain-2014.12.0/arm-cortexa8-linux—-gnueabihf/

gcc-4.9.2-glibc-2.20-binutils-2.24-kernel-3.16-sanitized/bin/arm-

cortexa8-linux—-gnueabihf-gcc -c hello.c

clean:
rm hello.o helloExample

» Create a make file.

» Save a make file in the same folder as the C application.
» Execute the make file with the “make” command.

= The Cprogram is installed.

7.6 Starting the application automatically (Autostart)

An application can be executed automatically with the Autostart function after the RFID inter-
face is started. For this a configuration file (unit file) must be created, written to the device and
activated

7.6.1 Autostart — Creating the configuration file (unit file)

» Create a unit file with the suffix “.service”.

Example: The “.setdxp.service” unit file starts a Node.js application, by which the DXP channels
are triggered with every restart.

» Call up via “ExecStart” the application to be called every time the interface is restarted:
ExecStart=path to programm app/file

A parameter can be transferred if required. Example: ExecStart=path to programm
app/file parameter

Further information on unit configuration files is available at:
https://www.freedesktop.org/software/systemd/man/systemd.service.html

Example: Autostart of an application with a parameter transfer

ExecStart=/usr/bin/node /home/user/ hello GPIO.Jjs webactive

42 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

https://www.freedesktop.org/software/systemd/man/systemd.service.html

76.2 Example: Using the unit file
The following example downloads the Node.js file “hello_GPIO.js” and stores it at “/home/user”:

[Unit]
Description= trigger the DXPs
#After=Service that must run before.service

[Service] Type=simpleExecStart=/usr/bin/node /home/user/
hello GPIO.js

[Install]
WantedBy=multi-user.target
» Creating an example file “./etc/systemd/system/":
sudo touch /etc/systemd/system/setdxp.service
» Open the created file:
sudo nano /etc/systemd/system/setdxp.service
» Insert the source text shown above in the opened file.

7.6.3 Activating the unit file
After being created, the unit file must be activated via the systemctl command. Access rights to
the root directory are required to activate. The .services file suffix is optional and can be omit-
ted.

» Activate the unit file via the following command:
sudo systemctl enable setdxp.service

The created symlink is:
/etc/systemd/system/multi-user.target.wants/setdxp.service a /etc/

systemd/system/setdxp.service

Deactivating the unit file

» Deactivate the unit file with the following command:
sudo systemctl disable setdxp.service

7.7 Managing access rights
The device supports the standard Linux user management. The access rights can be managed
with the following standard Linux tools:

adduser
addgroup
passwd
User Rights Password
root System administrator (all ac- turck
cess rights)
user Restricted access rights and password
console rights
sftpuser Access rights, SFTP rights in password

the directory /home

V01.01|2019/05 43

Commissioning

7.8 Installing Python packages
Modules, libraries and other software can be configured via the BSP (Board Support Package)
with the PTXdist distribution tool and loaded on the device. If packages are to be integrated in
an existing firmware, they must be created beforehand with PTXdist. PTXdist is available for
download at https://www.pengutronix.de/de/software/ptxdist.html.

The ipkg package manager (Itsy Package Management System) is installed on the device for in-
tegrating software packages. The ipkg package manager makes it possible to also install Py-
thon modules at a later time.

7.8.1 Example: Installing the Python module
The following example explains the procedure for the installation of the Python sh module. The
Python module is integrated at a later time in an existing firmware.

Requirements

PTXdist is installed on the Linux host system.
The required Python module was downloaded (example: https://amoffat.github.io/sh/).

Example: Installing the Python sh module

In order to create the Python sh module, a rule file must be created first.

» Create the rule file with the following command:
S ptxdist newpackage target

» Create interactive information on the package:
Output:
ptxdist: creating a new 'target' package:
ptxdist: enter package name........... :
sh ptxdist: enter version number......:
1.12.13 ptxdist: enter URL of basedir.:https://github.com/
amoffat/sh/archive/

ptxdist: enter suffix.................: tar.gz
ptxdist: enter package author.........: Your Name <E-Mail>
ptxdist: enter package section........: Python3

generating rules/sh.make
generating rules/sh.in

The sh.make and sh.in files are created automatically.

» If known, enter the key of the package as a SH_MD5 parameter in the sh.make file.

» Setthe SH_CONF_TOOL parameter in the sh.make file to the appropriate tool (in this
case: Python 3).
SH_CONF_TOOL :=python3

» If a Python module has a separate subfolder: Create the subfolder in the target directory
(in this case not required):
@$(call install copy, module, 0, O, 0755, $(PYTHON3 SITEPACK-
AGES) /foldername)

» Inthe #Target-Install area, specify the installation location of the Python module in the
target system (Example: sh module):
@for file in “find $(SH PKGDIR)/usr/lib/python$ (PYTHON3 MA-
JORMINOR) /site-packages \

! -type d ! -name "*.py" -printf "$P\n" ; do \

44 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

https://www.pengutronix.de/de/software/ptxdist.html
https://amoffat.github.io/sh/

$(call install copy, sh, 0, 0, 0644, -, \
/usr/lib/python$ (PYTHON3 MAJORMINOR) /site-packages/$
Sfile); \
done

Dependencies can be entered in the sh.in file. Python 3 must be available in the following ex-
ample in order to install Python modules. The “setuptools” module must be available on the
host system.

» Enter dependencies as follows:
SECTION=python3
config PYTHON_ SH
tristate
select PYTHON3 # Python 3 must be installed
select HOST PYTHON3 SETUPTOOLS # Setuptools must be in-
stalled on the host
prompt "sh"
help
FIXME

» Compile.

In order for the sh module to be created with the next build, the module must be selected in
“menuconfig”:

» Open “menuconfig” with the following command:
ptxdist menuconfig

» Navigate to the Python 3 modules via “Scripting Languages” = “python3 Extra Mod-
ules”.

» Select the sh module.

» Save the configuration.

python3 Extra Modules
Arrow keys navigate the menu. <Enter> selects subme
Highlighted letters are hotkeys. Pressing <Y> inclu
features. Press <Esc><Esc> to exit, <?> for Help, <
[] excluded <M> module < > module capable

< > Tlupé

< > lxml

<*> pyserial --->
<*> python-gpio

< > python-1xml
s

alohttp- json-rpc
alohttp-wsgi
alohttp

chardet
decorator
python3-gbulb

GI bindings
ipython-genutils
ipython

msgpack

path-py

pexpect
pickleshare
ptyprocess
simplegeneric
python3-systemd
traitlets

)

AN ANAAMANANAAMNAAMAMARA
VYV VVVVYVVVYVVYVVYVYVY

Fig. 23: PTXdist - “Python 3 Extra Modules”

V01.012019/05 45

46

v

Generate ipkg packages with the following command:
ptxdist go

If no errors have occurred, the package with the sh module can be found at “platform-
tben-Ix-linux/packages/”:
$ 1s platform-tben-lx-linux/packages/

python3 3.5.0 armhf.ipk
sh 1.12.14 armhf.ipk

Copy the ipk file to the TBEN device (e.g. with scp):

scp ~/turck/TBEN-Lx-4RFID-8DXP-LNX/platform-tben-1x-1linux/
packages/sh 1.12.14 armhf.ipk
root@Target-IP:/directory/of/your/choice/

Log into the TBEN device in order to install the “sh_1.12.14_armhf.ipk” package.
Call up the ipkg manager to install the Python module:

ipkg -force-depends install sh 1.12.14 armhf.ipk

The module is available in the Python Interpreter.

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

8 Setting

The read/write heads must be assigned parameters via the read/write head protocol. For this
the read/write head protocol must be implemented on the TBEN device.

V01.01 | 2019/05 47

Operation

9 Operation

9.1 LEDs

The devices are provided with three freely programmable multicolor LEDs.

DXP LEDs (digital channels, LEDs DXPO...3)

LED green LED red Meaning

Off Off No 1/0 signal present

Lit Off 1/0 signal present

Off Lit Overload at output

Flashing Flashing Overload of the auxiliary voltage
APPL LED Meaning

Flashing white Wink command active

9.2 Reset device (Reset)

The device can be reset to the factory settings via the rotary coding switches and via the Turck

Service Tool using the F_Reset function. The device can be reset via a reboot or the Reset com-

mand in the event of an error. The settings are retained if a restart was carried out or the device
was reset with the Reset command.

48 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

10 Troubleshooting

If the device does not function as expected, first check whether ambient interference is present.
If there is no ambient interference present, check the connections of the device for faults.

If there are no faults, there is a device malfunction. In this case, decommission the device and
replace it with a new device of the same type.

V01.01 | 2019/05 49

Maintenance

11 Maintenance

11.1 Executing the firmware update via the USB interface

» Create the “FW_UPDATE” folder on a USB stick.

Save the firmware as a bin file in the “FW_UPDATE” folder.

Insert the USB stick in the device.

The RUN LED flashes green at 0.5 Hz.

Hold down the Set button for at least 3 seconds within 30 segments.

The RUN LED flashes in the sequence 3 x green - pause (1 Hz) - 3 X green - pause (1 Hz) -

v yd vy

The data is loaded into the device.

The firmware update is completed when the RUN LED flashes orange at 1 Hz.
Remove the USB stick.

Carry out a voltage reset.

The device restarts.

$vvdd

112 Carrying out a firmware update via the console
The firmware update can either be transferred to the device with a suitable tool (e.g. WinSCP or
FileZilla) or as a “Secure Copy”.

» Load the update file (e.g. TBEN-Lx-4RFID-8DXP-LNX_V1010.bin) to the device with a suit-
able tool (e.g. WinSCP) (see “Example: Carrying out a firmware update with WinSCP and
PuTTY).

Alternatively transfer the update file to the device as a “Secure Copy”:
scp Path/To/Your/File/root.ubifs user@ip of your board:/run/
Update:

» Carry out the update on the device with the following command:
sudo update system /path/To/The/Updatefile/updatefile

= If no error messages appear, the firmware was successfully installed.

50 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

11.2.1 Example: Carrying out a firmware update with WinSCP and PuTTY

The following example carries out a firmware update using the WinSCP and PuTTY tools.

Requirements

WinSCP is installed.
PUTTY is installed.
The update file is available as a .bin file on a local computer.

Transferring a firmware file with WinSCP

» Log into the device in WinSCP with the following entries:
Transmission protocol: FTP
Computer name: IP address of the device (in this case: 192.168.1.100)
Port: 21
User name: root
Password: turck

NOTE
The login via SFTP and Port 22 is also possible.

'ﬁ Login E@@

] E New Site Session

[File protocol: Encryption:
FIP v] ’No encryption -
Host name: Fort number:
192.168.1.100 21 :
User name: Password:
root IIIIIl
[] Anonymous login

Save |v Advanced... |v

(Eee

Fig. 24: WinSCP - Login

Close] l Help

V01.012019/05 51

» Navigate in WinSCP to the memory location of the update file on the host PC.

- Local Mark Files Commands Session Options Remote Help

ém % % Synchronize ‘- f |m ﬂ ‘@ Queue - éTransfer Settings Default @ ES =

| & r00t@192168.1100 | G New Session

"M Deskeop BN ie -+ BN *). root B - 66 02 R AindFies | P

5 Upload ~ |@ Edit ~ 3 LS Properties ‘g New ~ -[+] = [¥] £ i@ Download ~ “:/f Edit ~ 3 LS Properties |§‘ New~ = [+] [=]

‘Name - | Size Type Changed Name | Size Changed Rights Owner
. Parent directory 1192018 14:11:12 .

| TBEN-Lx-4RFID-8DXP-.. 49.014 KB BIN-Datei 20.7.2018 11:44:51

0Bof478MBin0ofl

OBof0Bin0of0

FTP g 00037

Fig. 25: WinSCP — Memory location of the update file on the host PC

» Navigate to the Run directory on the device.

- Local Mark Files Commands Session Options Remote Help

;E % % Synchronize ‘- f |@ %% ‘@ Queue ~ %Transfer Settings Default

& r00t@192.168.1.100 | [New Session

° M Desktop ~EE e mz|%
£ E3 Upload v|QEditvfoProperties|§ New - = [+] — [V]

| Name - Size Type Changed

Name

Size Changed

g
2

L. Parent directory 11.9.2018 14:11:12
| TBEN-Lx-4RFID-8DXP-.. 49.014KB BIN-Datei 207.2018 11:44:51

' wl

| dbus

1 log

| mount

| sshd

| systemd

| tmpfiles.d
| udev

| user

| agetty.reload
| ifstate

| nologin

| resolv.conf
| rsyslogd.pid
|l utmp

1112016
111.2016
111.2016
111.2016
111.2016
1112016
11.9.2018 13:59
111.2016
11.9.2018 12:50
11.9.2018 12:50
111.2016
11.9.2018 12:49
111.2016
11.9.2018 12:50

0 000000000000

0Bof478MBin0ofl

Fig. 26: WinSCP — RUN directory on the device

OBof248Bin0ofl14

52 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

» Save the update file in the run directory of the device by drag and drop or by clicking

Upload.
» Confirm the following prompts with OK.

Upload file "TBEN-Lx-4RFID-8DXP-LMNX_V0307.bin' to remote directory:

Transfer settings
Transfer type: Binary

Transfer in background (add to transfer queue)

Transfer % s |v | oK I Cancel ﬁ

Do not show this dialeg box again

Fig. 27: WinSCP - Confirm the prompt for the transfer
The transfer of the update file is displayed by WinSCP as follows:

g File: C:\...\TBEN-Lx-4RFID-8DXP-LNX_V0307.bin

Target: Jrun/
-

Time left: 0:00:05 Time elapsed: 0:00:00
Bytes transferred: 4,26 MB Speed: 7.78 MB/s

-
X B — &R - Ounimited ~

Fig. 28: WinSCP - File transfer

V01.01|2019/05 53

Maintenance

Carrying out a firmware update with PuTTY

» Open PuTTY.
» Enter the following settings in PuTTY:
Host Name: IP address of the device
Port: 22
» Optional: Assign a name for the current session (here: TBEN-Lx_LNX). The session can be
loaded via Load for later repetitions.
» With saved sessions: Select TBEN-Lx_LNX and confirm with Load.

» Click Open.
% PuTTY Configuration ? >
Category:
B- Sgssinn | Basic options for your PuTTY session |
L__I TE"" I_.nglging Specify the destination you wart to connect to
?Tnlé::rbnard Host Mame {or IP address) Port
Bl 152.168.1.100) | |22 |
- Features Connection type:
= Window (JRaw () Telnet () Rlogin @ S5H () Seral
:;nppea.rance Load, save or delete a stored session
- Behaviour
- Translation Saved Sessions
- Selection | |
- Colours .
Default Settings
= Connection Load
- Data Save
- Prowy
o Telnet Delete
- Rlogin
E- 55H
- Sefial Close window on exit:
() Mwayz () MNever (8 Only on clean exit

About Help Cancel

Fig. 29: PUTTY configuration

54 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

» Login on the device with user name “root” (password: “turck”). The password entered is
not displayed in PuTTY.
» Run the update with the command sudo update system /run/[File
name] .bin.
Example: sudo update system /run/TBEN-Lx-4RFID-8DXP-
LNX 01520038 v1.0.1.0.bin

192.1628.1.100 - PuTTY - | >

n/TEBEN-Lx-4RFID-SDXP-LNX 0152003

Fig. 30: PUTTY - Starting the firmware update

» Waittill the updating system finished message is displayed.

Fig. 31: PUTTY - Update successful

» Restart the device with the reboot command.

EF 192.168.1.100 - PuTTY - O >
=

JEN-Lx-4RFID-SDXP-LNX 0152003

Fig. 32: PUTTY - Restarting the device

V01.01|2019/05 55

» Check the current firmware status, e.g. with the Turck Service Tool: The current firmware
status is shown under Version.

© . [@O.EeN . @ EIP X

Search... (F5) | Change (F2) Wink (F3) Actions (F4) Clipboard Language Expert view ON | Start DHCP (F&) Configuration (F7) ARGEE (F8) Clnsel
No. MAC address . Name |IP address Netmask Gateway Mode Device Version Adapter ARGEE Protocol
.‘I 00:07:46:1F:F7:1B 152.168.1.100 255.255.255.0 192.168.1.1 ROTARY TBEN-L5-4RFID-8DXP-LNX 1.0.1.0 13216811 - Turck

Fig. 33: Turck Service Tool - Checking the firmware version

56 Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

12 Repair

The device must not be repaired by the user. The device must be decommissioned if it is faulty.
Observe our return acceptance conditions when returning the device to Turck.

12.1 Returning devices
Returns to Turck can only be accepted if the device has been equipped with a Decontamination
declaration enclosed. The decontamination declaration can be downloaded from
http://www.turck.de/de/produkt-retoure-6079.php
and must be completely filled in, and affixed securely and weather-proof to the outside of the
packaging.

13 Disposal

'@ The devices must be disposed of correctly and must not be included in normal
household garbage.

V01.01 | 2019/05 57

http://www.turck.de/de/produkt-retoure-6079.php

Technical Data

14 Technical Data

58

Technical data

Power supply

Power supply voltage

24 VDC

Permissible range

18...30VDC

Total current

V1 max. 8 A, V2 max. 9 A at 70 °C per module

RFID power supply

2 A per channel at 70° C

Sensor/actuator supply

2 A per socket at 70°C

Potential isolation

Potential isolation of V1 and V2 voltage group

Dielectric strength

Up to 500 VDC V1 and V2 to Ethernet

Power dissipation

Typically <5W

System description

Processor

Cortex A8, 800 MHz

Memory

512 MB Flash ROM; 512 MB DDR3 RAM

Memory expansion

1 x USB Host port

Real-time clock

Yes

Operating system

Linux

System data

Transfer rate

Ethernet 10 Mbit/s/100 Mbit/s

Connection technology

2 X M12, 4-pin, D-coded

RFID

No. of channels

4

Connection technology

M12

Power supply

2 A per channel at 70 °C, short-circuit-proof

Cable length max. 50 m
Digital inputs

No. of channels 8
Connection technology M12, 5-pin
Input type PNP

Type of input diagnostics

Channel diagnostics

Switch threshold

EN 61131-2 type 3, pnp

Signal voltage Low signal <5V
Signal voltage High signal >11V
Signal current Low signal <1.5mA
Signal current High signal >2mA

Potential isolation

Galvanic isolation at P1/P2

Dielectric strength

Up to 500 VDC (V1 and V1 compared to Ether-
net)

Digital outputs

No. of channels 8
Connection technology of outputs M12, 5-pin
Output type PNP

Type of output diagnostics

Channel diagnostics

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

V01.01 | 2019/05

Technical data
Output voltage

24 VDC from potential group

Output current per channel

2.0 A, short-circuit proof, max. 4.0 A per socket

Utilization factor

0.56

Load type

EN 60947-5-1: DC-13

Short-circuit protection

Yes

Potential isolation

Galvanic isolation at P1/P2

Dielectric strength

Up to 500 VDC (V1 and V1 compared to Ether-
net)

Conformity with standard/directive

Vibration test

Acc. to EN 60068-2-6

Acceleration

Upto20g

Shock testing

Acc. to EN 60068-2-27

Drop and topple

Acc. to IEC 60068-2-31/IEC 60068-2-32

EMC (electromagnetic compatibility)

Acc.toEN61131-2

Approvals and certificates

CE

UL cond.

cULus LISTED 21 W2, Encl.Type 1
IND.CONT.EQ., Encl. Type 1 -40...+55 °C

General information

Dimensions (W x L x H)

60.4 x 230.4 X 39 mm

Operating temperature -40...+70°C

Storage temperature -40...+85 °C

Operating height max. 5000 m

Degree of protection IP65/1P67/IP69K

MTTF 75 years to SN 29500 (Ed. 99) 20 °C
Housing material PA6-GF30

Housing color Black

Material of window Lexan

Material of screw

303 stainless steel

Material of label

Polycarbonate

Halogen-free

Yes

Mounting

2 fixing holes, @ 6.3 mm

59

Appendix: EU Declaration of Conformity

15

60

Appendix: Declaration of Conformity

EU-Konformitatserklarung Nr.: 5035-2M s
EU Declaration of Conformity No.: g uncK

Wit/ we: HANS TURCK GMBH & CO KG
WITZLEBENSTR. 7, 45472 MULHEIM A.D. RUHR

erklaren in alleiniger Verantwortung, dass die Produkte
declare under our sole responsibility that the products

Kompakte /0O Module in IP20/IP67: Typen / types: FDN20-*, FDNL-*, FDNP-*, FDP20-*, FGDP-*, FGEN-*,

Compact /0 moduies in FLDP-*, FLIB-*, FXEN-*, SDPX-*, TBDP-*, TBEN-*, TBIL-*, TBPN-*

auf die sich die Erklarung bezieht, den Anforderungen der folgenden EU-Richtlinien durch Einhaltung der
folgenden Normen genigen:

to which this declaration relates are in conformity with the requirements of the following EU-directives by compliance with the following
standards:

EMV - Richtlinie /EMC Directive 2014 /30/EU 26.02.2014
EN 61131-2:2007 (Abschnitte / section 8, 9, 10)

RoHS — Richtlinie /RoHS Directive 2011/65/EU 08.06.2011

Weitere Normen, Bemerkungen:
additional standards, remarks:

Zuséatzliche Informationen:
Supplementary infomation:

Miilheim, den 13.07.2018 ‘ fg

i.V. Dr. M. Linde, Leiter Zulassungen /Manager Approvals
Ort und Datum der Ausstellung / Name, Funktion und Unterschrift des Befugten /
Place and date of issue Name, function and signature of authorized person

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

16 Appendix: Example — "HelloGPIO" for Node js

// This script show how to use the DXP's of the TBEN-4RFID-8DXP-LNX
// Start the script with "webactive" option will make the I/0 useable via webbrowser
// Strat the script without options will toggle the I/O's

const Gpio = require('onoff').Gpio;

if (process.argv[2] == 'webactive')
{
runserver () ;
}
else
{
//toggle the dxp's...
time0 =new Date().getTime () ;
for (var state = 1; state > -1; state--)
{
var index=2;
while(index < 16)
{
var timenow = new Date () .getTime() ;
if (timenow - time0 > 1000)
{
// func:
setGpioByInt (index, state);
index++;
timeO=timenow;
}
}
}
}

// Make the dxp switchable via webbrowser
// http://ip of the board:8080/2dxp=13&value=1
function runserver()
{
var http = require('http');
var url = require('url');
http.createServer (function (req, res){
res.writeHead (200, {'Contend-Type': 'text/plain'});
var q = url.parse(req.url, true).query;

dxp_port= g.dxp;

dxp_value= g.value;

//const DXP Writer = new Gpio (12, "out");
//DXP_Writer.writeSync(0);

if (dxp_port > 7 && dxp_port < 16)
{
res.write('Would like read DXP' 4 dxp port + ' or set to ' + dxp value);
if (dxp_value == "1")
{
setGpio(dxp port, 1);
}
else if (dxp_value == '0'){
setGpio(dxp port, 0);
}
res.write('\nDXP'+ dxp port +' ist: ' + getGpio(dxp_port) + ' now\n');

}
else{
res.write('DXP ports are between 8 and 16 available only');
}
res.end('\nsee you...\n');
}) .listen(8080, "192.168.1.81");
console.log('Server running at http://192.168.1.81:8080/");

V01.01 | 2019/05

61

function setGpio(w _Pin, val) {

}

function setGpioByInt(w_Pin, val) {

}

switch (w_Pin) {
case "8":
res = 12;
break;
case "9":
res = 13;
break;
case "10":
res = 47;
break;
case "11":
res = 63;
break;
case "12":
res = 86;
break;
case "13":
res = 87;
break;
case "14":
res = 88;
break;
case "15":
res = 89;

}

const DXP Write = new Gpio(res,

DXP_Write.writeSync(val);

console.log('set Gpio '+ res +

switch (w_Pin) {
case o:

res = 12;

break;
case 9:

res = 13;

break;
case 10:

res = 47;

break;
case | 1:

res = 63;

break;
case 12:

res = 86;

break;
case 13:

res = 87;

break;
case 14:

res = 88;

break;
case 15:

res = 89;

}

const DXP Write = new Gpio(res,

DXP_Write.writeSync(val);

console.log('set Gpio '+ res +

function getGpio(r_Pin) {

62

switch (r_Pin) {

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

"out") ;

+ val);

Touty;

+ val);

case "8":
res = 110;
break;
case "9":
res = 111;
break;
case "10":
res = 112;
break;
case "11":
res = 113;
break;
case "12":
res = 114;
break;
case "13":
res = 116;
break;
case "14":
res = 117;
break;
case "15":
res = 7/;
}
const DXP_Read = new Gpio(res, "in");
DXP_Read.setActiveLow('true');
var res = DXP_Read.readSync();
console.log('Gpio '+ r_Pin + ' is: ' + res);
return res;

V01.01|2019/05 63

/2

4
100002513 | 2019/05 ?

L : ka‘;om

i
o SR

[\
N

	 Contents
	1 About these Instructions
	1.1 Target groups
	1.2 Explanation of symbols used
	1.3 Other documents
	1.4 Feedback about these instructions

	2 Notes on the Product
	2.1 Product identification
	2.2 Scope of delivery
	2.3 Legal requirements
	2.4 Manufacturer and service

	3 For Your Safety
	3.1 Intended use
	3.2 General Safety Notes

	4 Product Description
	4.1 Device overview
	4.1.1 Operating elements

	4.2 Properties and features
	4.3 Operating principle
	4.4 Functions and operating modes
	4.4.1 Linux distribution – Software components

	4.5 USB Host Port
	4.6 Technical Accessories

	5 Mounting
	5.1 Mounting the device outdoors
	5.2 Grounding the device
	5.2.1 Grounding and shielding concept
	5.2.2 Grounding the device (FG)

	6 Connection
	6.1 Connecting the modules to Ethernet
	6.2 Connecting the power supply
	6.3 Connecting RFID read/write heads
	6.4 Connecting digital sensors and actuators

	7 Commissioning
	7.1 Setting the IP address
	7.1.1 Setting the IP address via switches at the device
	7.1.2 Setting the IP address via the Turck Service Tool

	7.2 Programming RFID channels
	7.2.1 GPIOs of the RFID channels – Overview
	7.2.2 Adapt slave controller via script
	7.2.3 Programming RFID channels with Python 3
	7.2.4 Programming RFID channels with Node.js
	7.2.5 Programming RFID channels with C or C++

	7.3 Programming digital channels (DXP)
	7.3.1 GPIOs of the DXP channels – Overview
	7.3.2 Setting DXP functions via script
	7.3.3 Programming DXP channels with Python 3
	7.3.4 Programming DXP channels with Node.js
	7.3.5 Programming DXP channels with C or C++

	7.4 Programming LED functions
	7.4.1 LEDs – Overview
	7.4.2 Setting LED functions via a script
	7.4.3 Programming LED functions with Python 3
	7.4.4 Programming LED functions with Node.js
	7.4.5 Programming LED functions with C or C++

	7.5 Creating a C application
	7.6 Starting the application automatically (Autostart)
	7.6.1 Autostart – Creating the configuration file (unit file)
	7.6.2 Example: Using the unit file
	7.6.3 Activating the unit file

	7.7 Managing access rights
	7.8 Installing Python packages
	7.8.1 Example: Installing the Python module

	8 Setting
	9 Operation
	9.1 LEDs
	9.2 Reset device (Reset)

	10 Troubleshooting
	11 Maintenance
	11.1 Executing the firmware update via the USB interface
	11.2 Carrying out a firmware update via the console
	11.2.1 Example: Carrying out a firmware update with WinSCP and PuTTY

	12 Repair
	12.1 Returning devices

	13 Disposal
	14 Technical Data
	15 Appendix: Declaration of Conformity
	16 Appendix: Example – “HelloGPIO” for Node.js

