

Your Global Automation Partner

SAE J1939 Encoders RS-52/53

Manual

2 Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

1 General
2 The SAE J1939 Set of Profiles5
3 Parameter Groups (PG)
4 Network Management
5 Transport Protocols
6 Power Supply and CAN-BUS Connection9
7 Default Settings on Delivery
8 Process Data PGN Assignments
9 Setup PGN
10 Request_Setup PGN14
11 Setup Parameter in Detail
12 LED States
13 Abbreviations Used
14 Decimal-Hexadecimal Conversion Table21
15 Additional Sources

1 General

SAE J1939

The Society of Automotive Engineers (SAE) Truck Bus Control and Communications Subcommittee has developed a family of standards concerning the design and use of devices that transmit electronic signals and control information among vehicle components. SAE 1939 is a high-speed, CLASS C-type communication network designed to support real-time closed loop control functions between electronic control devices that are physically distributed throughout the vehicle. It is used for off-highway machines in applications such as construction, material handling , forestry machines etc. The application focus is on the power trains and chassis of commercial vehicles. The protocol is used in heavy vehicles for on-street and off-road operations (construction machines). Related to J1939 are the ISOBUS according to ISO11783 for agricultural machines, NMEA2000 for maritime use, and the ISO 11992 truck & trailer interface. Similarly, the FMS standard is based on J1939 communication.

J1939 is structured in several parts based on a ISO Open System Interconnect (OSI) Model. The OSI Model defines a set of Profiles for communication, each performing different functions.

J1939 is a multimaster system with decentralized network management without channel-based communication. It supports up to 254 logical nodes and 30 physical ECUs per segment. The information is described as parameters (signals) and combined on 4 data pages in parameter groups (PGs). Each parameter group can be identified via a unique number, the parameter group number (PGN). Irrespective of this, each signal is assigned a unique SPN (suspect parameter number). The majority of the communication usually occurs cyclically and can be received by all ECUs without explicit request of data (broadcast). In addition, the parameter groups are optimized to a length of 8 data bytes. This enables very efficient use of the CAN protocol. Particular information such as configuration data or diagnostic data can be exchanged exclusively between two ECUs (peer-to-peer). The specification of the communication, broadcast or peer-to-peer, is a property of the parameter group used. Thus, in addition to the definition of which parameters are transmitted, the transmission type also depends on the parameter group. If larger data quantities must be transmitted, transport protocols (TPs) are used: BAM (Broadcast Announce Message) and CMDT (Connection Mode Data Transfer). With BAM TP, the transmission of the data occurs via broadcast. There is no control data flow (handshake) between the sender and receiver. With CMDT TP, the data is exchanged between precisely two ECUs. In case of error, the control data flow that takes place here allows a restarting of communication without a complete repetition of the data transmission. In addition, the CMDT TP allows a receive confirmation of the data by the receiver. So that peer-to-peer communication is possible on a CAN network, each ECU must be assigned a unique address in the range from 0 to 253. To avoid the mistaken occurrence during operation of two ECUs with the same address, a clever strategy is required – the network management (NM). With J1939, the NM is organized decentrally. That is, each ECU must implement a minimum functionality of the NM. The tasks of the NM are:

- Resolution of address conflicts (minimum requirement)
- Ongoing check as to whether ECU addresses are assigned in duplicate on a network (minimum requirement)
- Change of the ECU addresses at runtime
- Unique identification of an ECU with the help of a name that is unique worldwide
- This name also serves to identify which functionality an ECU has on the network

2 The SAEJ1939 set of profiles

The SAE J1939 set of profiles is based on the Controller Area Network (CAN) data link layer (ISO 11898-1) using the extended frame format (29-bit identifiers). Several documents have undergone revision after the initial publication in 1998. The specifications have been added to, parts taken off and clarified. The set of specifications, available from SAE (www.sae.org), includes:

- J1939/11 Physical Layer (250 kbit/s, shielded twisted pair)
- J1939/12 Physical Layer (twisted quad of wires and active bus termination)
- J1939/13 Off-Board Diagnostic Connector
- J1939/15 Reduced Physical Layer (250 kbit/s, unshielded twisted pair)
- J1939/21 Data Link Layer
- J1939/31 Network Layer
- J1939/71 Vehicle Application Layer
- J1939/73 Application Layer Diagnostics
- J1939/81 Network Management

The naming of the layers is not always compliant to the OSI reference model and to CiA's recommend terminology. The J1939/21 and J1939/31 define partly an application layer, and the J1939/71 and J193973 specify an application profile.

SAE J1939/11

This physical layer specification is based on the ISO 11898-2 standard (high-speed CAN physical layer). It defines a single, linear, shielded twisted-pair of wires running around the vehicle linking each of its ECUs together. The topology is supposed to be a linear bus running at 250 kbit/s with termination resistors to reduce reflections. A J1939 network can be made of multiple bus sections, each one linked with a bridge. The main function of the bridge is to provide electrical isolation between different segments so that electrical failure of one system will not cause such failure to an adjacent system. For example, the failure of the CAN/J1939 system on the trailer should not cause the failure of the truck's tractor main CAN/J1939 control system. The maximum number of ECUs is 30, and the maximum bus length is 40m.

SAE J1939/21

The SAE J1939/21 is the heart of the J1939 set of specifications. It describes commonly used messages such as Request, Acknowledgement, and Transport Protocol messages. The Transport Protocol specifies the breaking up of large amounts of data into multiple CAN-sized frames, along with adequate communication and timing to support effective frame transmission between nodes. Slight modifications have added flexibility to the Transport Protocol, allowing the sender (server) of data to specify the number of CAN frames to be sent at any one time. Previously, this number was greatly determined by the receiver's (client's) limitations in the number of frames it could receive. The 29-bit identifier comprises the following sub-fields: priority, reserve, data page, PDU format, PDU specific, and source address. The source address field ensures unique CAN identifiers, so no two nodes can ever transmit the very same CAN identifier. In the beginning, J1939 grouped several parameters (signals) together into a Parameter Group (PG). Each PG was then assigned a number: its PGN (Parameter Group Number). The PGN identifier contained a reserve bit, a data page bit, a PDU format field, and a PDU-specific field. This structure has since caused some confusion with regard to PDU1-type (destination-specific) messages. Since the PDU-specific (group extension) field becomes the Destination Address in a PDU1 message, the question arose if the PGN changes, which is does not. The PGN is a static number referring to the data being transmitted and should be considered independently of the CAN identifier.

SAE J1939/31

This specification describes bridge functionality, how CAN messages from one network to an another are transferred. The message filter function in the bridge reduces the transmission of CAN messages in the individual network segments.

SAE J1939/71

The so-called application layer (in CiA terms it is an application profile), all parameters as well as assembled messages called parameter groups are specified. Each CAN message is referenced by a unique number, the PGN (parameter group number). The latest release of the J1939/71 document incorporates several approved additions, and brings the total number of defined messages up to almost 150. New message additions support anti-theft, fuel-specific, turbocharger, ignition, and tire pressure functions, among others. These additions and enhancements include the addition of the "source address of controlling device" parameter to several engine, transmission and brake controller messages. Inclusion of this parameter in a message will allow the receiving device to identify the original source of the message (e.g., a particular device from a bridged network).

SAE J1939/73

Additions to the diagnostics document (J1939/73) involve memory access, start/stop functions, binary data transfer, security, and calibration information. Memory access is provided with security levels. The start/stop message is used during diagnostics performance, to quieten other devices (including nodes providing bridges to other networks). Revisions of the J1939/73 document also provide clarification regarding DTC (diagnostic trouble code) encoding in the data field. This encoding, previously interpreted differently by various manufacturers, was standardized, utilizing the reserved bit as the Conversion Method (CM) bit.

SAE J1939/81

The J1939/81 Draft includes state diagrams for initialization and more clearly defines constraints on the use of addresses. The J1939/82 Draft specifies the proper procedure for self-compliance and presents a scripting language that tightly defines compliance processes, and the J1939/83 Tutorial Draft provides an explanation of J1939. For more detailed information please visit www.sae.org

3 Parameter groups (PG)

Parameter groups combine similar or associated signals. In the specification SAE J1939-71 the parameter groups are defined with the signals they contain. In addition, some manufacturer-specific parameter groups can be used. Parameter groups with up to 8 data bytes are transmitted in a CAN message. With more than 8 bytes, a transport protocol is used. Each parameter group is addressed uniquely via a number (Parameter Group Number PGN). For this number, a 16-bit value is used that is composed of the PDU format and PDU specific. There are two types of parameter group numbers (PGNs):

• Global PGNs for parameter groups that are sent to all (broadcast). Here all 16 bits of the PGN are used; the value of the upper 8 bits (PDU format) must be greater than 239 (F016)

• Specific PGNs for parameter groups that are sent to particular devices (peer-to-peer). With these PGNs, only the higher-value 8 bits (PDU format) are valid and the value must be smaller than 240. The lower-value byte (PDU specific) is always 0.

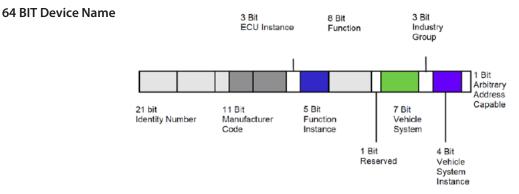
With this breakdown of the PGN, 240 + (16 * 256) = 8672 different parameter groups are possible. With the transmission of a parameter group, the PGN is coded in the CAN identifier.

Sample of a Parameter Group definition:

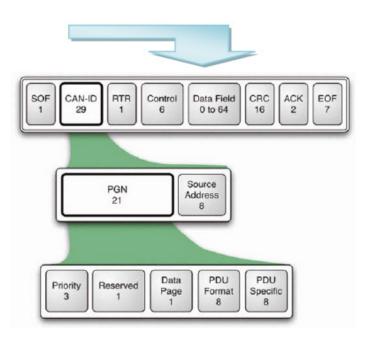
Name: Engine temperature Transmission rate: 1s Data length: 8 bytes Data page: 0 PDU format: 254 PDU specific: 238 Default priority: 6 PG Number: 65,262 (FEEE16)

Description of Data Field : (Byte Nr.)

- 1 Engine coolant temperature
- 2 Fuel temperature
- 3,4 Engine oil temperature
- 5,6 Turbo oil temperature
- 7 Engine intercooler temperature
- 8 Not defined


4 Network Management

On a J1939 network, each device has a unique address. Each message that is sent by a device contains this source address. There are 255 possible addresses:

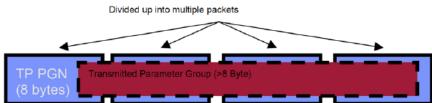

0..253 – Valid addresses of an ECU 254 – Zero 255 – Global

Each device type has a preferred address (see [1]). Before a device may use an address, it must register itself on the bus. This procedure is called "address claiming" (ACL).

Thereby the device sends an "AddressClaim" parameter group with the desired source address. This PG contains a 64-bit device name. If an address is already used by another device, then the device whose device name has the higher priority has received the address. The device name contains some information about the device and describes its function.

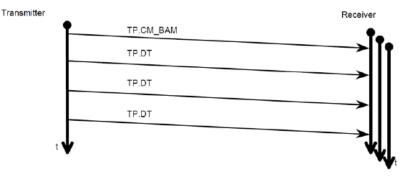
Since the function of a device is contained in the name, the address can be changed at will and the correct device is always addressed that provides the required functionality.

Interpretation of the CAN Identifier

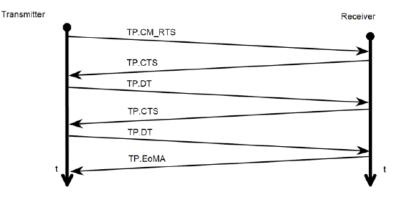

The CAN identifier of a J1939 message contains PGN, source address, priority, data page bit, and a target address (only for a peer-to-peer PG). The identifier is composed as follows:

Priority 3Bit Reserved 1 Bit Data page 1 Bit PDU format 8 Bit PDU specific 8 Bit Source address 8 Bit

With PDU format < 240 (peer-to-peer), PDU specific contains the target address. Global (255) can also be used as target address. Then the parameter group is aimed at all devices. In this case, the PGN is formed only from PDU format. With PDU format >= 240 (broadcast), PDU format together with PDU specific forms the PGN of the transmitted parameter group.


5 Transport Protocols

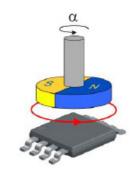
Parameter groups that contain more than 8 data bytes are transmitted with a transport protocol.



For peer-to-peer and broadcast transmission, there are two different protocols. For the transport protocols, there are two special parameter groups available, which are used for the connection management (TP.CM) and the transmission of the data (TP.DT). For broadcast transmission, the BAM protocol is used.

Here, after a BAM-PG (Broadcast Announce Message), the transmitter sends all data PGs at a minimum interval of 50ms.

With the peer-to-peer transmission, the transmitter initiates the connection with a "request to send" message. The receiver then controls the transport protocol with "clear to send" and "end of message acknowledge."



6 Power Supply and CAN-bus connection

Power Supply

Sensor:	Magnetic Hall -Sensor
	14 Bit Resolution / 9 Bit Accuracy
Power supply:	830 VDC
Current consumption:	typ. 22mA at 24 VDC
	max. 49 mA at 10 VDC
Reverse polarity protection:	yes
CAN Transceiver:	82C251 / short circuit tested
Galvanic Isolation:	no
J1939 Interface	adapted

Short name	Description	Cable color
CG	CAN Ground	gray
CL	CAN_Low(-)	yellow
СН	CAN_High(+)	green
OV	0Volt power	white
+V	+UB power	brown

Short name	Description	Cable color	Color
CG	CAN Ground	gray	GRY
CL	CAN_Low(-)	yellow	YEL
СН	CAN_High(+)	green	GRN
0V	0Volt power	white	WHT
+V	+UB power	brown	BRN

Terminal M12-Connector

Mechanical characteristics:

6000 min ⁻¹
<0,06 Nm
approx. 0,2 kg
IP 67 (IP 69k on request)
-40 °C+85 °C
Shaft: stainless steel, Flange: aluminium, Housing: die cast zinc, Cable: PUR
5000 m/s ² , 6ms
300 m/s², 102000 Hz
1000 m/s ² , 2ms
52500 Hz, 100 m/s ² - rms

7 Default settings on delivery

Process data	Length	Protocol	Message	PGN	Default
Baudrate		J1939			250 kBit/s
Termination					On
Address claiming					On
		DefaultAddress	ECU		0x14 (20 ₁₀)
		Arbitrary Address Capable			1
		Industry Group			0x5 (Process Controller)
		System			0x0 (Non specific)
		System Instance			0x0 (Non specific)
		EC Instance			0x0 (Non specific)
		Function			0x8E (142 ₁₀)
		Function Instance			0x0 (Non specific)
		Manufacturer			0x122 (290 ₁₀)
		Identity Number			Actual Serial Number
Position		Cyclic, acyclic	BAM	FF30 ₁₆	
Bit 031	DWORD				Position value
Bit 3263	DWORD				Speed signed value
Bit 6471	BYTE				FF Working Area state (*opt.)
Bit 72104	DWORD				Offset value
Position	8 Bytes	Cyclic, acyclic	P-to-p	CBF4 ₁₆	
Bit 031	DWORD				Position value
Bit 3263	DWORD				Speed signed value
SetupPGN	28 Bytes	Data	TP.CM	EC00	Defaults
Bit 015	WORD	Operating Parameter	TF.CIVI	EC00 ₁₆	0 = Scaling off
Bit 1647	DWORD	Sensor MUR			16384 (14 Bit resolution)
Bit 4879	DWORD	SensorTMR			16384
Bit 4079 Bit 80111	DWORD	SensorCycleTime			50 ms
Bit 112119	BYTE	SensorCANBusTermination			
	DWORD				1 = on
Bit 120151 Bit 151184		SensorCycleTimeBAM SensorPresetValue			0 ms 0
	DWORD				
Bit 185192	BYTE	SensorPresetEnable			0 = off
Bit 193223	DWORD	reserved			

On delivery the following software parameters have been factory set.

Byte = 8 Bit Word = 16 Bit DWORD = 32 Bit

8 Process Data PGN Assignments

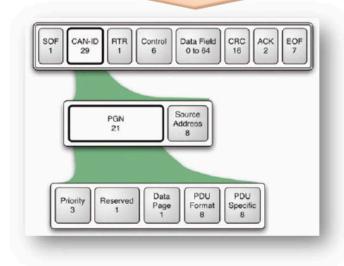
PGN CBF4₁₆ Encoder Position value with speed (8 Byte length)

Within the J1939 encoder as a service (peer-to-peer) available.

• Cyclic as a response to an internal timer cycle (presettable with SetupPGN at position Bit80...111)

The encoder transmits the current position and speed value (adjusted possibly by the scaling factor)

Data content:


Byte 0	Byte 1	Byte 2	Byte 3
2 ⁷ 2 ⁰	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ²⁴

Position range of values:0.... maximum physical resolution (16384) 14-bitSpeed range values:-6000 ... +6000 in rpm

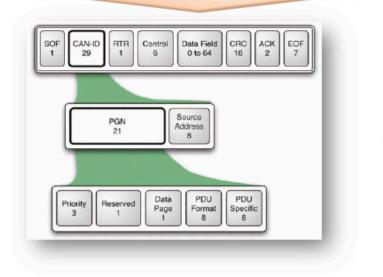
Position	Cyclic, acyclic	P-to-p	*CBF4 ₁₆	
			Bit 031	Position value
			Bit 3263	Speed signed value in rpm
*Dredafined DCN				

*Predefined PGN

Data Field Bit 0 Bit 31	Bit 3263
Position Value (unsigned)	Speed Value (signed) rpm
LSBMSB	LSBMSB
016383	-6000+6000

Predefined cycle time 50 ms

PGN FF30₁₆ Encoder Position value (BAM-Message with TP.CM)


If larger data quantities must be transmitted, transport protocols (TPs) are used: BAM (Broadcast Announce Message) and CMDT (Connection Mode Data Transfer). With BAM TP, the transmission of the data occurs via broadcast. There is no control data flow (handshake) between the sender and receiver. With CMDT TP, the data is exchanged between precisely two ECUs

BAM-PG (Broadcast Announce Message) - the transmitter sends all data PGs at a predefined interval. Cyclic as a response to an internal timer cycle (presettable with SetupPGN at position Bit 120...151)

Position	Cyclic, acyclic	BAM	*FF30 ₁₆	
			Bit 031	Position value
			Bit 3263	Speed signed value
			Bit 6471	Working Area state (² optional)
			Bit 72104	Offset value

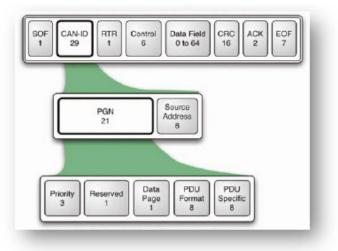
*Predefined PGN ²optional implementation necessary

Data Field Bit 0Bit 31	Bit 3263	Bit 6471	Bit 72104
Position Value (unsigned)	Speed Value (signed)	Working Area State	Offset Value
LSBMSB (32 Bit)	LSBMSB ((32 Bit)	1 Byte	32 Bit
016383	-6000+6000	00FF16	016383

Predefined cycle time off

9 Setup PGN

PGN EC00₁₆ Setup parameter for Encoder settings (28 Byte length)


For these special transport protocols, there is a special parameter group available, which are used for the connection management (TP.CM) and the transmission of the data (TP.DT) -> EC00₁₆

Sample transmission

Exported events:

Time	Chn	Dir	ID	PGN	Name	Send node	Src	Dest	Prio	DLC	Data	Attr
425.433090	1	Τx	18EC14F4x	EC00p	TPCM		F4	14	6	8	10 18 00 04 FF 00 EF 00	
0.000940	1	Rx	1CECF414x	EC00p	TPCM	SuspensionSteerAxle	14	F4	7	8	11 04 01 FF FF 00 EF 00	
0.000900	1	Τx	18EB14F4x	EB00p	TPDT		F4	14	6	8	01 00 00 00 04 00 00 00	
0.000610	1	Τx	18EB14F4x	EB00p	TPDT		F4	14	6	8	02 20 00 00 00 00 00 00 00	
0.000600	1	Τx	18EB14F4x	EB00p	TPDT		F4	14	6	8	03 01 00 00 00 00 88 13	
0.000610	1	Τx	18EB14F4x	EB00p	TPDT		F4	14	6	8	04 00 00 FF FF FF FF FF	
0.001030	1	Rx	1CECF414x	EC00p	TPCM	SuspensionSteerAxle	14	F4	7	8	13 18 00 04 FF 00 EF 00	
0.165790	1	Rx	1CECFF14x	EC00p	TPCM	SuspensionSteerAxle	14	FF	7	8	20 18 00 04 FF 00 EF 00	
0.050280	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	14	FF	7	8	01 00 00 00 04 00 00 00	
0.050020	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	14	FF	7	8	02 20 00 00 00 00 00 00 00	
0.050090	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	14	FF	7	8	03 01 00 00 00 00 88 13	
0.050020	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	14	FF	7	8	04 00 00 FF FF FF FF FF	

SetupPGN	28 Bytes	Data	TP.CM	EC00 ₁₆	Defaults
Bit 015	WORD	Operating Parameter			0 = Scaling off
Bit 1647	DWORD	Sensor MUR			16384 (14 Bit resolution)
Bit 4879	DWORD	Sensor TMR			16384
Bit 80111	DWORD	SensorCycleTime			50 ms
Bit 112119	BYTE	SensorCANBusTermination			1 = on
Bit 120151	DWORD	SensorCycleTimeBAM			0 ms
Bit 151184	DWORD	SensorPresetValue			0
Bit 185192	BYTE	SensorPresetEnable			0 = off
Bit 193223	DWORD	reserved			FFFFFFFh

10 Request_Setup PGN

PGN CC14₁₆ Setup parameter Request complete

For these special transport protocol, there is a special parameter group available, which are used for the connection management (TP.CM) and the transmission of the data (TP.DT) -> EB00₁₆ Sample transmission

Time	Chn	Dir	ID	PGN	Name	Send node	Src	Dest	Prio	DLC	Data
11.716190	1	Тх	18EC14F4x	EC00p	TPCM		F4	14	6	8	10 46 00 0A FF 00 CC 00
0.000980	1	Rx	1CECF414x	EC00p	TPCM	SuspensionSteerAxle	14	F4	7	8	11 0A 01 FF FF 00 CC 00
088000.0	1	Тх	18EB14F4x	EB00p	TPDT		F4	14	6	8	01 15 CD 5B 07 AB CD EF
0.000610	1	Тх	18EB14F4x	EB00p	TPDT		F4	14	6	8	02 01 00 00 00 00 00 00 00
0.000610	1	Тх	18EB14F4x	EB00p	TPDT		F4	14	6	8	03 00 00 00 00 00 00 00 00
0.000620	1	Тх	18EB14F4x	EB00p	TPDT		F4	14	6	8	04 00 00 00 00 00 00 00 00
0.000610	1	Тх	18EB14F4x	EB00p	TPDT		F4	14	6	8	05 00 00 00 00 00 00 00
0.000620	1	Тх	18EB14F4x	EB00p	TPDT		F4	14	6	8	06 00 00 00 00 00 00 00 00
0.000610	1	Тх	18EB14F4x	EB00p	TPDT		F4	14	6	8	07 00 00 00 00 00 00 00 00
0.000610	1	Тх	18EB14F4x	EB00p	TPDT		F4	1 ⁰ R	-	8	00 00 00 00 00 00 00 00 00
0.000630	1	Тх	18EB14F4x	EB00p	TPDT					8	09 00 00 00 00 00 00 00 00
0.000600	1	Тх	18EB14F4x	EB00p	TPDT		F4	MR	6	8	0A 00 00 00 00 00 00 00 00
0.001120	1	Rx	1CECF414x	EC00p	TPCM	SuspensionSteerAxle	14	F4	7	8	1346 00 0A FF 00 CC 00
0.001150	1	Rx	1CECFF14x	EC00p	TPCM	SuspensionSteerAxle	14	FF	7	8	20 46 00 0A FF 00 CC 00
0.050190	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	14	FF	7	8	01 01 00 00 20 00 00 00
0.050050	1					SuspensionSteerAxle				8	02 20 00 00 00 00 00 00 00
0.050030	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	φy	çie	F im	lê.	03 01 00 00 00 00 00 00
0.050000	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	14	FF	7	8	04 00 00 00 00 00 00 00 00
0.050020	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	14	FF	7	8	05 00 00 00 00 00 00 00
0.050030	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle SuspensionSteerAxle	14	EF	7	8	06 00 00 40 00 00 00 40
0.049790	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxe	12	Eirr	ų vv a	ಸ್ಟಿಕ	07 00 00 00 00 00 40 01
0.050040	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	1 4	ddr	ess	8	08 00 00 00 00 00 6D 06
0.049990	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	14	FF	7	8	09.00 00 01 56 34 AA 00
0.050020	1	Rx	1CEBFF14x	EB00p	TPDT	SuspensionSteerAxle	14	FF	7	8	0A 00 14 00 3A 40 54 FB

- Row 01 0100=Operating Parameter, 00200000 = MUR
- Row 02 002000 TMR, 0000000 = Cycle Time for PGN CBF4₁₆
- Row 03 01 = Termination on, 00000000 = BAM cycle time 0000 +
- Row 04 0000 = Set Value Encoder
- Row 09 AA345601 = Serial Number
- Row 0A FB54h = Checksum CRC Ram, 403Ah = Checksum Firmware

11 Setup Parameter in Detail

Operating Parameters	
Bit 0: Code sequence:	0 = increasing when turning clockwise (cw)
	1 = increasing when turning counter-clockwise (ccw)
	Default: Bit = 0
Bit 2: Scaling Function:	0 = disable,
	1 = enable
	Default: Bit = 0

Bit	Function	Bit = 0	Bit =1
0	Code sequence	CW	CCW
1	Not used	Disabled	
2	Enable scaling	Disabled	Enabled

Measuring Units per Revolution (MUR)

This parameter configures the desired resolution per revolution. The encoder itself then internally calculates the appropriate scale factor. The calculated scaling factor MUR (by which the physical position value will be multiplied) is worked out according to the following formula:

MUR = Measuring units per revolution / phys. resolution Singleturn

Data content:

Byte 0	Byte 1	Byte 2	Byte 3
2 ⁷ 2 ⁰	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ³⁴

Range of values:0....maximum physical resolution (16383) 14-bitDefault setting:16384 (14-bit)

Caution: After changing the measuring step it is necessary to set the preset value also to zero /or a value.

Total Measuring Range (TMR)

This parameters configures the total number Singleturn measuring steps. A factor will be applied to the maximum physical resolution. The factor is always < 1.

After the stated number of measuring steps, the encoder will reset itself to zero.

Data content:

Byte 0	Byte 1	Byte 2	Byte 3
2 ⁷ 2 ⁰	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ³⁴

Range of values:0....maximum physical resolution (16383) 14-bitDefault setting:16384 (14-bit)

Caution:	
After changing the measuring step it is necessary to set the preset value also to zero /or a value.	

Preset Value

The position value of the encoder will be set to this preset value. This allows, for example, for the encoder's zero position to be compared with the machine's zero position.

Data content:

Byte 0	Byte 1	Byte 2	Byte 3
2 ⁷ 2 ⁰	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ³⁴

Range of values:0.... maximum physical resolution (16383) 14-bitDefault setting:0

Preset enable/disable

This Object can be used to set the preset value via software. By default the value is set to 0, which means that the preset is not activated at transmission of the Setup PGN.

Data content:

Byte 0
2 ⁷ 2 ⁰

Range of values 0..1 Default setting: 0

CAN bus termination OFF/ON

This Object can be used to set the bus termination via software. By default the value is set to 1, which means that the bus termination is enabled.

Data content:

Byte 0
2 ⁷ 2 ⁰

Range of values 0..1 Default setting: 1

Cycle time Value (peer-to-peer)

The cycle timer value of the encoder PGN will be set to this preset value. Cyclic as a response to an internal timer cycle (presettable with SetupPGN at position Bit80...111)

Data content:

Byte 0	Byte 1	Byte 2	Byte 3
2 ⁷ 2 ⁰	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ³⁴

Range of values:0.... maximum timer resolution (65535)Default setting:10 ms

Cycle time Value (BAM message)

The cycle timer value of the encoder PGN will be set to this preset value. Cyclic as a response to an internal timer cycle (presettable with SetupPGN at position Bit120...151)

Data content:

Byte 0	Byte 1	Byte 2	Byte 3
2 ⁷ 2 ⁰	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ³⁴

Range of values:0.... maximum timer resolution (65535)Default setting:0 ms (disabled)

Programming Examples:

PGN EC00₁₆ Setup parameter for Encoder settings For these special transport protocols, there is a special parameter group available, which are used for the connection management (TP.CM) and the transmission of the data (TP.DT) -> EC00₁₆

FF30h BAM-Message (Preset 5000, Scaling on, Cycle time 20 ms)

Setting Preset value to 5000 Set Preset enable = 0xFF Scaling on / Direction cw = 0x04 MUR = 8192 TMR = 8192 BAM cycle time = 20 ms Bus termination on = 1

SetupPGN		Value (hex)	EC00 ₁₆	Parameters
Bit 015	Operating Parameter	0004		4 = Scaling on /CW
Bit 1647	Sensor MUR	00002000		8192 (13 Bit resolution)
Bit 4879	SensorTMR	00002000		8192
Bit 80111	SensorCycleTime (CB00h)	00000000	CB14 ₁₆	0 ms
Bit 112119	SensorCANBusTermination	01		1 = on
Bit 120151	SensorCycleTimeBAM	00000014	FF30 ₁₆	20 ms
Bit 151184	SensorPresetValue	00001388		5000
Bit 185192	SensorPresetEnable	FF		0xFF = Preset active/on

CB00h Peer-to-peer configuration (10ms cycletime, Scaling off, Preset to 0)

Setting Preset value to 0 Set Preset enable = 0xFF Scaling off / Direction ccw = 1 MUR = 16384 TMR = 16384 Sensor cycle time (CB00h peer-to-peer) 10 ms BAM cycle time = 0 ms Bus termination on = 1

SetupPGN		Value (hex)	EC00 ₁₆	Parameters
Bit 015	Operating Parameter	0001		1 = Scaling on /CW
Bit 1647	Sensor MUR	00004000		16384 (14 Bit resolution)
Bit 4879	SensorTMR	00004000		16384
Bit 80111	SensorCycleTime (CB00h)	000000A	CB14 ₁₆	10 ms
Bit 112119	SensorCANBusTermination	01		1 = on
Bit 120151	SensorCycleTimeBAM	0000000	FF30 ₁₆	0 ms
Bit 151184	SensorPresetValue	00000000		0
Bit 185192	SensorPresetEnable	FF		0xFF = Preset on

12 LED states

green LED = BUS State red LED = ERR display

Annunciator	LED	Description	Cause of error	Addendum
Bus OFF	0	No connection to the ECU ²	Data transmission line break Incorrect baud rate Inverted data line	Observe combination with ERR LED If ERR LED is also OFF, please check power supply ³
Bus flashing ca. 100ms	\bigcirc	Connection to device e.g. Cyclic transfer	Cyclic transfer	Communication is running
Bus flashing ca. 100msec		Connection to ECU Stopped state	Address claiming procedure is running	
ERR Flashing Ca. 1 sec	0	Connection to ECU interrupted	No CAN-Frame acknowledge	No bus connection
ERR ON		BUS OFF State	Short circuit on the Bus	

The individual LED annunciators can of course also occur in combinations.

² The Master can be a ECU or a second communication partner. ³ Operating voltage

13 Abbreviations used

- CAN Controller Area Network
- **CRC** Cyclic Redundancy Check
- DA Destination Address
- DLC Data Length Code
- DP Data Page
- DT Data Transfer
- EDP Extended Data Page
- EOF End of Frame
- ID Identifier
- MAC Medium Access Control
- PDU Protocol Data Unit
- PF PDU Format
- **PGN** Parameter Group Number
- PS PDU Specific
- SA Source Address
- **SPN** Suspect Parameter Number
- **TP** Transport Protocol

14 Decimal-Hexadecimal Conversion Table

In case of numbers, decimal values are indicated as figures without extension (e. g. 1408), binary values are followed by b (e. g.1101b) and hexadecimal values are followed by h (e. g. 680h) behind the figures.

Dec	Hex	Dec	Hex	Dec	Hex	Dec	Hex
0	00	32	20	64	40	96	60
1	01	33	21	65	41	97	61
2	02	34	22	66	42	98	62
3	03	35	23	67	43	99	63
4	04	36	24	68	44	10	64
5	05	37	25	69	45	101	65
6	06	38	26	70	46	102	66
7	07	39	27	71	47	103	67
8	08	40	28	72	48	104	68
9	09	41	29	73	49	105	69
10	0A	42	2A	74	4A	106	6A
11	0B	43	2B	75	4B	107	6B
12	0C	44	2C	76	4C	108	6C
13	0D	45	2D	77	4D	109	6D
14	0E	46	2E	78	4E	110	6E
15	0F	47	2F	79	4F	111	6F
16	10	48	30	80	50	112	70
17	11	49	31	81	51	113	71
18	12	50	32	82	52	114	72
19	13	51	33	83	53	115	73
20	14	52	34	84	54	116	74
21	15	53	35	85	55	117	75
22	16	54	36	86	56	118	76
23	17	55	37	87	57	119	77
24	18	56	38	88	58	120	78
25	19	57	39	89	59	121	79
26	1A	58	3A	90	5A	122	7A
27	1B	59	3B	91	5B	123	7B
28	1C	60	3C	92	5C	124	7C
29	1D	61	3D	93	5D	125	7D
30	1E	62	3E	94	5E	126	7E
31	1F	63	3F	95	5F	127	7F

15 Additional Sources

SAE J1939 DOCUMENTS

SAE J1939 Recommended Practice for a Serial Control and Communications Vehicle Network
SAE J1939-11 Physical Layer—250K Bits/s, Shielded Twisted Pair
SAE J1939-13 Off-Board Diagnostic Connector

[4] SAE J1939-15 Reduced Physical Layer, 250K Bits/s, Un-Shielded Twisted Pair (UTP)

[5] SAE J1939-21 Data Link Layer

[6] SAE J1939-31 Network Layer

[7] SAE J1939-71 Vehicle Application Layer

[8] SAE J1939-73 Application Layer - Diagnostics

[9] SAE J1939-81 Network Management Protocol

Introduction to J1939

Turck Inc. sells its products through Authorized Distributors. These distributors provide our customers with technical support, service and local stock. Turck distributors are located nationwide – including all major metropolitan marketing areas. For Application Assistance or for the location of your nearest Turck distributor, call: 1-800-544-7769

Specifications in this manual are subject to change with out notice. Turck also reserves the right to make modifications and makes no guarantee of the accuracy of the information contained herein. Literature and Media questions or concerns? Contact Marketing Turck USA – media@turck.com

28 subsidiaries and over 60 representations worldwide!

Printed in USA

©2015 by Turck Inc. All rights reserved. No part of the publication may be reproduced without written permission.

MA1026 A 01/17

www.turck.com