Your Global Automation Partner . u nc K

Reference Manual

MA3000
0521B

1.1
1.2
13
1.4
15

21
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

411.1
411.2
4.11.3
4.11.4
4.11.5
4.11.6
4.11.7
4.11.8

51
5.2

General Information

About these instructions
Explanation of symbols used
Contents

Feedback about these instructions
Technical support

Preface

What is ARGEE 3?

Features of ARGEE 3

What are ARGEE’s advantages and limitations?
What products support ARGEE?
Who should use this manual?
What is the purpose of this manual?
Logging into ARGEE
Opening the Environment
Logging into the Program Mode
Welcome to Flow Chart

Flow Chart

The Basics

Condition

Operations

Actions

Clean Empty Rungs

Add Empty Rungs

Delete All Rungs

Timers

Counters

Internal Reg

Flow Chart Menu Bar

Run

Debug (ARGEE Flow)
Open/Save As

New Project

Convert to ARGEE PRO
Set Title

About

Flowchart

ARGEE PRO
The Basics

Variables and Expressions
2

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

10
10
10
11
11
11
11
12
12
12
13
13
13
13
14
14
14
14
15
15
16
16
17
17
18
18

18
19
19
20
20
20
21
21

22
22
22

5.3
54

54.1
5.4.2
5.4.3
544
5.4.5
5.4.6
5.4.7
54.8
54.9
5.4.10
54.11
54.12

55

55.1
55.2
5.5.3
554

5.6
5.7

57.1
5.7.2
5.7.3

5.8

5.8.1
5.8.2
5.8.3
584
5.84.1
5.8.4.2
5.8.4.3
5.8.4.4
5.8.4.5

59

59.1
59.2
593

5.10
511
511.1
5.12

5.12.1
5.12.2
5.12.3
5.12.4
5.12.5
5.12.6
5.12.7

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Condition
Actions

Assignment
Caoll

Timer Start
Timer On
Timer Off
Trace
Comment
Count Up
Count Down
Reset Counter
Call

How Actions respond to Conditions

Program Variables

Variable Name

Variable Types

Add Variable

Program Variables Context Menu

Alias Variables
Main Task

Adding Conditions to the Main Task
Adding Actions to the Main Task
Main Task Context Menu

Function Blocks

The Basics

Function Block Options
Function Block Segments
Function Block Statements
While

For

If

Else If

Else

Libraries

What is a Library?
Creating a Library
Importing a Library

HMI Screens

Keyboard Shortcuts

List of Keyboard Shortcuts:
ARGEE PRO Menu Bar

Debug (ARGEE PRO)

Print

IO Config (/O Configuration)
HMI

Project

Edit Code

Delete Project

3

"TWURC K

23
24

24
24
25
26
27
28
29
29
29
30
31
32

33

33
33
36
36

38
38

39
40
41

43

43
43
44
44
45
46
47
47
48

48

48
48
49

50
51
51
53

53
53
53
53
54
54
54

5.12.8
5.12.9

6.1
6.2

6.2.1
6.2.2

6.3

7.1

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5

7.2

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5

8.1
8.2
8.3

8.3.1
8.3.2

9.1
9.2

9.2.1

9.2.11
9.2.1.2
9.2.1.3
9.2.14
9.2.15

9.3

9.31
9.3.2
9.3.3
9.34
9.34.1
9.3.4.2
9.3.4.3
9.3.4.4
9.3.4.5

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Run Without Source
ARGEE PRO Advanced Mode

ARGEE PRO Advanced Mode
The Basics
Function Block Types

Regular
Task (Multitasking)

Wait Until
Debugger
Debugger Information

Single Task
Multiple Tasks
Break Points
Trace

Order of Operation — Calls & Function Blocks

Debug Menu Bar (ARGEE PRO)

Halt

Step

Continue

Modify Vars (Modify Variables)
Finish Modifications

ARGEE Simulation Mode
Opening the Environment
Logging into Simulation Mode
Selecting Device to Simulate

Flow Chart Simulation Mode
Pro Simulation Mode

ARGEE HMI
The Basics
HMI Screen

Sections

Display Number/State/String
Display Number with Valid Range
Enter Number/String

Enter State

Submit Action

HMI Grid Screen

HMI Grid Screen
Grid Row

Grid Cell

Grid Element
Display Value
Enter Value
Button

Static Text
Screen List

4

54
55

56
56
57

57
57

57
58
58

58
58
58
58
59

60

60
60
61
61
61

62
62
62
62

63
63

64
64
64

64
65
66
67
69
71

72

72
73
73
74
75
75
77
77
78

9.3.4.6
9.3.4.7
9.3.4.8
9.3.4.9
9.3.4.10
9.3.4.11

9.4
9.5

9.5.1
9.5.2

10

10.1
10.2
10.3
10.4

10.4.1
10.4.2
10.4.3

11
111
11.2

1121
11211
11.2.1.2
11.2.1.3
11.21.4
11.2.1.5
11.2.1.6
11.2.1.7
11.2.1.8
11.2.1.9
11.2.1.10
11.2.2
11221
11.2.2.2
11.2.2.3
11.2.3
11.2.31
11.2.3.2
11.2.4
11.241
11.2.4.2
11.2.4.3
11.2.4.4
11.2.45
11.2.4.6
11.2.4.7
11.2.4.8
11.25
11.2.6

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Static Graphics
Multi-State Display String
Multi-State Display Graphics
Dropdown List
Display Value with Health
Link

HMI Image Group
HMI Formatting Tips

Cell Spacing in a HMI
Row Spacing in a HMI

PLC Connectivity

Communicating with EtherNet/IP Master — RSLogix5000 / Studio5000
Communicating with a PROFINET Master — SIMATIC STEP 7
Communicating with a Modbus TCP/IP Master — Crimson 3
Communicating with a Turck PLC or TX500 Series HMI — CODESYS 3

EtherNet IP
PROFINET
Modbus TCP/IP

Appendix | - Definitions

Built-in Functions (Ctrl-f)
Built-in Functions Menu

Strings/Arrays
String Length
String Left
String Right
String Middle
String Copy
String Concatenate
String Compare
String to Integer
Integer to String
Array Initialize

Timer
Start Timer
Timer Expired
Timer Count

Counter
Counter Expired
Counter Count

Math
Addition
Subtraction
Multiplication
Division
Modulo
Absolute Value
Minimum Value
Maximum Value

Brackets

Boolean Logic

5

"TWURC K

79
80
81
82
83
84

86
87

87
88

90
90
92
94
96

96
98
100

102
102
103

103
104
105
106
107
108
108
109
110
112
114
114
114
115
116
116
117
118
118
119
119
119
119
120
121
121
122
123
123

11.26.1
11.2.6.2
11.2.6.3
11.2.7
11.2.71
11.2.7.2
11.2.7.3
11.2.7.4
11.2.7.5
11.2.7.6
11.2.8
11.2.81
11.2.8.2
11.2.8.3
11.2.9
11.2.9.1
11.2.9.2
11.2.10
11.2.10.1
11.2.10.2
11.2.10.3
11.2.10.4
11.2.10.5
11.2.10.6
11.2.10.7
11.2.10.8
11.2.10.9

Boolean AND
Boolean OR
Boolean NOT
Compare
Greater Than
Greater Than or Equal to
Less Than
Less Than or Equal to
Equal
Not Equal
Trigger
Change of State (F_COS)
Rising Edge Trigger (R_TRIG)
Falling Edge Trigger (F_TRIG)
Bit Operations
Get Bits
Set Bits
Advanced IO/PLC Array
Get IO Input Integer
Set 10 Output Integer
Set IO Parameters Integer
Get IO Diagnostics Integer
Get 10 Input Array
Set 10 Output Array
Get IO Diagnostics Array
Get PLC Input Array
Set PLC Output Array

11.2.10.10 Write Data Stream
11.2.10.11 Read Data Stream

11.2.11

11.2.11.1
11.2.11.2
11.2.11.3
11.2.11.4
11.2.11.5
11.2.11.6
11.2.11.7
11.2.11.8

11.3

1131
11.3.2
11.3.21
11.3.2.2
11.3.2.3
11.3.3
11.3.4

114

1141
11.4.2
11.4.3

11.5

1151
1152
115.3

Protocol Conversion
Little-endian, Get 16 Bits
Big-endian, Get 16 Bits
Little-endian, Get 32 Bits
Big-endian, Get 32 Bits
Little-endian, Set 16 Bits
Big-endian, Set 16 Bits
Little-endian, Set 32 Bits
Big-endian, Set 32 Bits

ARGEE Security Features

Visual Behavior
Connection Behavior
EtherNet IP Master
Modbus TCP Master
PROFINET Master
Password Protection — ARGEE Environment
Source Code Protection — Run Without Source

System Performance

Scan Cycle Information
IO Variable Formats
Defining Variable Types — (Advanced Definitions)

1/0 Variable Definitions

Slot “0” Diagnostics Definitions
Slot 1 or 2 Input Definitions
Slot 1 or 2 Output Definitions

6

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

124
124
124
125
125
125
126
126
126
127
127
127
128
129
129
129
130
131
132
133
133
134
135
135
135
135
136
136
136
137
137
138
139
140
141
141
142
142

142

142
143
143
143
143
144
146

147

147
147
149

151

151
151
152

"TWURC K

12 Appendix Il - Example Code 153
12.1 How to Erase a Project from a Device 153
12.1.1 Running an empty Project 153
12.1.2 Using the Webserver Page 153
12.1.3 Using the Turck Service Tool 154
12.2 Trace Example 155
12.3 How to Call a Function Block 156
12.4 Creating and Importing Structure Text (ST View) 157
12.4.1 Example of Exporting an ARGEE Project as Structure Text 157
12.4.2 Example of Importing Structure Text and Converting it into an ARGEE Project. 158
125 How to Export a CSV File 160
12.5.1 HMI export of arrays 160
12.5.2 Example of Exporting a CSV 160
12.6 Advanced Application Examples 162
12.6.1 Working with 1O-Link 162
12.6.1.1 Working with IO-Link 162
12.6.1.2 Acyclic Communication — Read 163
12.6.1.3 Acyclic Communication — Write 164
12.6.2 Working with RFID 165
12.6.3 Working with Analog 168
12.7 Advanced Analog Example — Inclinometer 169
12.7.1 Working with Encoders 171
12.7.2 Working with State Variables 172
12.7.2.1 State Machine 172
12.7.2.2 State Variables 173
12.7.3 Working with User-Defined Data Types 177
12.7.3.1 Referencing Internal Function Block Variables 178
12.7.3.2 User-Defined Data Types as Arguments to other Function Blocks 179
12.7.4 Working with Hex Values 180
12.7.5 Advanced Bitwise Operations — Bit Masking 181
12.7.5.1 What are Bitwise Operations? 181
12.7.5.2 What is Bit Masking? 181
12.7.5.3 Example of Bit Masking 181
12.7.6 Nesting Function Blocks 181
12.7.7 Advanced HMI Example — Tank monitoring with graphics 182
13 Appendix Ill — Libraries 188
131 MISC 188
13.1.1 MISC_wait_ms 188
13.1.2 MISC_array_to_string 188
13.1.3 MISC_sort 189
13.1.4 MISC_filter_sample_into_array 190
13.1.5 MISC reset _filter 191
13.1.6 MISC_NUMBER_st 191
13.1.7 MISC_copy_byte to_array 192
13.1.8 Float_to_String 193
13.2 Technology 194
13.2.1 BLCEN_RFIDS_Routines 194
13.2.2 BLCEN_RFIDS_Read 194
13.2.3 BLCEN_RFIDS_Write 195

7

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

13.2.4 TBEN_S2_RFID_READ
13.25 TBEN_S2_RFID_WRITE
13.2.6 TBEN_IOL_AsyncRead
13.2.7 TBEN_IOL_AsyncWrite

8

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T+1 800 544 7769 | F +1 763 553 0708 | www.turck.com

196
197
198
199

"TWURC K

1 General Information

1.1 About these instructions
The following user manual describes the setup, functions, and use of the system. It helps you to plan,

design, and implement the system for its intended purpose.

Note*: Please read this manual carefully before using the system. This will prevent the risk of personal
injury or damage to property or equipment. Keep this manual safe during the service life of the system. If
the system is passed on, be sure to transfer this manual to the new owner as well.

1.2 Explanation of symbols used

Warnings

Action-related warnings are placed next to potentially dangerous work steps and are marked by graphic
symbols. Each warning is initiated by a warning sign and a signal word that expresses the gravity of the
danger. The warnings have absolutely to be observed:

DANGER!

DANGER indicates an immediately dangerous situation, with high risk, the death or severe injury,
if not avoided.

WARNING!

A WARNING indicates a potentially dangerous situation with medium risk, the death or severe
injury, if not avoided.

ATTENTION!

ATTENTION indicates a situation that may lead to property damage, if it is not avoided.

ﬂ NOTE

In NOTES you find tips, recommendations and important information. The notes facilitate work,
provide more information on specific actions and help to avoid overtime by not following the
correct procedure.

» CALLTO ACTION

This symbol identifies steps that the user has to perform.

= RESULTS OF ACTION

This symbol identifies relevant results of steps.

9

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

1.3 Contents

Contents of this manual/guide:

Overview of the ARGEE Manual Content

How to access the ARGEE Environment

A general overview and walkthrough of the ARGEE Flow Chart

A general overview and walkthrough of ARGEE PRO

A general overview and walkthrough of ARGEE PRO Advanced Mode
A detailed explanation of the ARGEEs Debugger

A detailed explanation of Simulation Mode

A detailed explanation of the ARGEE HMI

A detailed explanation of PLC Connectivity

Appendix | - Definitions

Appendix Il - Example Code

1.4 Feedback about these instructions

We make every effort to ensure that these instructions are as informative and as clear as possible. If you
have any suggestions for improving the design or if some information is missing in the document, please
send your suggestions to techdoc@turck.com.

1.5 Technical support

For additional support, email inquiries to appsupport@turck.com, or call Application Support at 763-553-
7300, Monday-Friday 8AM-5PM CST.

10

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

mailto:techdoc@turck.com
mailto:appsupport@turck.com

"TWURC K

2 Preface

Read this preface to familiarize yourself with the rest of the manual. It provides answers to the following
guestions:

B Why use ARGEE?

What are ARGEE'’s advantages and limitations?
What products support ARGEE?

Who should use this manual?

What is the purpose of this manual?

What content is in the ARGEE 3 reference manual?

2.1 What is ARGEE 3?

ARGEE 3 is the programming software that is used to put logic inside Turck’s multi-protocol block I/O
devices. This can be done in anyone of three different coding formats Flow Chart, ARGEE PRO, and
ARGEE PRO Advanced. Imagine that a customer is trying to solve a simple application. This customer
does not need a PLC, but they do need some logic. ARGEE was created specifically to solve this
problem.

2.2 Features of ARGEE 3

The new features in ARGEE 3 include:
® Alias Variables

® Floating Point

® Function Blocks

B Improved HMI

B More Memory

B While, For, If, Else, Wait Until, and Call statements

2.3 What are ARGEE’s advantages and limitations?

ARGEE Advantages

B ARGEE stands alone

B Standalone application (No PLC needed to perform logic)
B ARGEE backs up the PLC
[]

If the application loses communication with the PLC, ARGEE can take over and safely shut
down the process

ARGEE and the PLC work together

Local Control (ARGEE can monitor an application and send updates back to the PLC)

ARGEE limitations
B One ARGEE block cannot control another ARGEE block

B ARGEE is not suited for motion applications

11

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

2.4 What products support ARGEE?

Multiprotocol Ethernet Block I/O devices
B TBEN-L Family

B TBEN-S Family
m FEN20 Family
B BL Compact Family

For more information, please contact Turck Application Engineers at: AppSupport@turck.com

2.5 Who should use this manual?

Use this manual if you are responsible for designing, installing, programming or troubleshooting a Turck
multiprotocol block that is using the ARGEE programmable functionality.

You should have a basic understanding of networking knowledge, Boolean algebra, and ladder logic. If
you do not possess these skills, contact your local Turck representative for proper training before using
ARGEE.

2.6 What is the purpose of this manual?

This manual is a reference guide for the ARGEE Programing Environment. This manual:
B Teaches the user how to use the ARGEE Flow Chart

Teaches the user about syntax in ARGEE PRO

Teaches the user about syntax in ARGEE PRO Advanced Mode

Provides code for common applications

Defines all the tag names associated with Turck 1/O cards

12

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

3 Logging into ARGEE

3.1 Opening the Environment

» Open the ARGEE Environment and double click on argee_startup.html.

Fa
Marme Date modified Type
Earlier_Environments 1/3172017 1:36 PM File folder
internal 1/31/2017 1:36 PM File folder
re‘ argee_startup.html /3172017 1:36 PM___ Chrome HTNIL Dc...I

ﬂ NOTE
ARGEE only opens up in HTML 5 compliant web browsers such as Google Chrome or Firefox.

3.2 Logging into the Program Mode

» Type your device’s IP Address into the ARGEE Device IP Address text box, and then click Enter
Program Mode.

Program Mode
ARGEE Device IP Address:
192.168.1.17

| Enter Program Mode

ﬂ NOTE
Simulation Mode is explained in chapter 8 ARGEE Simulation Mode.

3.3 Welcome to Flow Chart

TWUNRCK
& o (= [3 W [
Run Debug Open/Save As New Project Convert io ARGEE PRO Set Title About
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Timer 1 Expiration (in milliseconds): 0 Counter 1- Gount From 0 To: |0
Timer 2 Expiration (in milliseconds): 0 Counter 2 - Count From 0 To: 0
Slot 0.Module_Diagnostics_Available v Pass Through v Pass Through v No Action v
Slet 0.Medule_Diagnestics_Available v Pass Through ¥ Pass Through ¥ Mo Action v
Slet 0.Medule_Diagnestics_Available v Pass Through ¥ Pass Through ¥ MNo Action v
Slot 0.Module_Diagnostics_Available v Pass Through ¥ Pass Through v Mo Action v

Clean Empty Rungs J Add Empty Rungs J Delete All Rungs J

13

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

4 Flow Chart

4.1 The Basics

The Flow Chart Editor is made up of Condition, Operation, and Action Blocks. Conditions, Operations, and
Actions are selected by clicking their respective drop-down arrows. The Flow Chart Editor also provides
the user with two timers, two counters, and two internal registers.

F o G [iy [

Run Debug Open/Save As MNew Project Convert to ARGEE PRO Set Title About
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Timer 1 Expiration (in milliseconds): 0 Counter 1 - Count From 0 To: 0
Timer 2 Expiration (in milliseconds): 0 Counter 2 - Count From 0 To: 0
- Slot 1.0utput_value 7 ¥
Slot 1.Input_value_1 v [Th h ¥ ——Pass Th h v = =
I ot 1.Input_value_ I—I-l ass Throug ass Throug DK_- No Action -

Clean Empty Rungj} Add Empty Rungs J Delete All Rungs J

Condition Block Action Blocks

4.2 Condition

The Condition Block contains input conditions. The input conditions that the user sees correspond to the
device the user is connected to. Other included input conditions are: Timer X expired, Counter X expired,
and Internal Reg X.

Timer 1 Expiration (in milliseconds): 0 Counter 1 - Count From 0 To: 0

Timer 2 Expiration (in milliseconds): 0 Counter 2 - Count From 0 To: 0

Slot 1.Output_value 7 ¥

Slot 1.Input_value_1 ¥ — Pass Through ¥ Pass Through ¥ No Acti -
Slot 0.Module_Diagnostics_Available Lagi e Actien
Slot 0.Station_Configuration_Changed

_{{ Stot 0.Overcurrent_Isys fi Rungs)

Slot 0.Overvoltage_Field_Supply_V2
Slot 0.Undervoltage_Field_Supply_V2
Slot 0.Overvoltage_Field_Supply_V1
Slot 0.Undervoltage Field Supply V1

ﬂ NOTE
Expired functions are discussed in chapter 5.3 Condition. Internal Regs (Reg = register) are
discussed later in this chapter in section 4.9 Internal Reg.

4.3 Operations

The Operation Blocks contain various Boolean operations. If no operation is desired, select Pass Through.

Timer 1 Expiration (in milliseconds): 0 Counter 1 - Count From 0 To: 0
Timer 2 Expiration (in milliseconds): 0 Counter 2 - Count From 0 To: 0
Slot 1.Output_value_7 ¥
Slot 1.Input_value 1 M Pass Through ¥ —— Pass Through ¥ {_‘ c UIpUL_vale
* - No Action M
Pass Through
AND
Clean Empty Rungs J Add Empty Rungs J Delste All Rl oR
NOT
AND of 3 Inputs

ﬂ NOTE
Boolean Logic is discussed in the Appendix 11.2.7 Boolean Logic.

14

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

4.4 Actions

The Action Block contains output conditions. The output conditions the user sees corresponds to the block
the user is connected to. Other included output conditions are: TON Timer X, CTU Counter X, RESET
Counter X, and Internal Reg X.

Timer 1 Expiration (in milliseconds): 0 Counter 1- Count From 0 To: 0
Timer 2 Expiration (in milliseconds): 0 Counter 2 - Count From 0 To: 0
Slot 1.Input_value_1 v Pass Through v Pass Through v Sl 100 el §

No Action

Slot 1.Output_value D
Slot 1.Output_value_1
Slot 1.0utput_value 2
Slot 1.0utput_value 3
Slot 1.0utput_value_4
Slot 1.Cutput_value 5

Clean Empty Rungs J Add Empty Rungs J Delete All Rungs J

ﬂ NOTE
TON Timer X (Timer ON Timer X), CTU Counter X (CounT Up Counter X), and RESET Counter X
are discussed in chapter 5.4 Actions.

4.5 Clean Empty Rungs

The Clean Empty Rungs button will remove all unused rungs from the Flow Chart Editor.

Timer 1 Expiration {in milliseconds): 0 Counter 1 - Count From 0 To: 0
Timer 2 Expiration (in milliseconds): |0 Counter 2 - Count From 0 To: 0
\ 8
Slot 1.Input_value_2 v Pass Through v Pass Through Slot 1.Qutput_«a|ue_.. ’
= = No Action v
Slot 0.Module_Diagnostics_Available v Pass Through v Pass Through v No Action v
Slot 0. Module_Diagnostics_Available v Pass Through ¥ Pass Through ¥ Mo Action v
Slot 0.Module_Diagnostics_Available v Pass Through v Pass Through v No Action v

Clean Empty Rungs J Add Empty Rungs J Delete All Rungs J

Timer 1 Expiration (in milliseconds): |0 Counter 1 - Count From 0 To: |0
Timer 2 Expiration (in milliseconds): |0 Counter 2 - Count From 0 To: 0
Slot 1.0utput_value & v
Slot 1.Input_value_2 v Pass Through Pass Through ¥ Py ==

No Action v

Clean Empty Rungs J Add Empty Rungs J Delete All Rungs J

15

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

4.6 Add Empty Rungs
The Add Empty Rungs button will add four empty rungs to Flow Chart Editor.

Timer 1 Expiration (in milliseconds): |0 | Counter 1 - Count From 0 To: |0]
Timer 2 Expiration (in milliseconds): |0 | Counter 2 - Count From 0 To: |0]
Slot 1.0utput_value_8 ‘l']
Slot 1.Input_val 2 v P Th h r P Th h » = =
[Slot 1.Input_value_ ——Pass Throug —— Pass Throug]<No Action 7

Clean Empty Rungs ‘Add Empty Rungs DeleteNIRungsJ

Timer 1 Expiration (in milliseconds): |0 | Counter 1 - Count From 0 To: |0]
Timer 2 Expiration (in milliseconds): |0 | Counter 2 - Count From 0 To: |0]
Slot 1.0utput_value 8 v |
Slot 1.Input_value_2 v P Th h v P Th h v = =
[Slot 1.Input_value_ —— Pass Throug| }—— Pass Througl]l<[[ND Acion 2

[Slot 0.Module_Diagnostics_Available ¥ —— Pass Through ¥ ——Pass Through ¥ —— No Action

[Slot 0.Module_Diagnostics_Available ¥ —— Pass Through ¥ ——Pass Through ¥ — No Action

[Slot 0.Module_Diagnostics_Available ¥ —— Pass Through ¥ ——Pass Through ¥ —— No Action

[Slot 0.Module_Diagnostics_Available ¥ —— Pass Through ¥ ——Pass Through ¥ —— No Action

Clean Empty Rungs J Add Empty Rungs J Delete All Rungs J

4.7 Delete All Rungs

The Delete All Rungs button will remove all rungs from Flow Chart Editor.

Timer 1 Expiration (in milliseconds): |0 | Counter 1 - Count From 0 To: |0]
Timer 2 Expiration (in milliseconds): |0 | Counter 2 - Count From 0 To: |0]
Slot 1.0utput_value_§ v |
Slot 1.Input_value_2 v Pass Th LI Pass Th h v = =
[Slot 1.Input_value_ ——Pass Throug ——Pass Throug]l<[[Mo Acton 2

| Slot 0.Module_Diagnostics_Available ¥ —— Pass Through ¥ ——Pass Through ¥ |—— No Action

| Slot 0.Module_Diagnostics_Available ¥ —— Pass Through ¥ ——{Pass Through ¥ |—— No Action

| Slot 0.Module_Diagnostics_Available ¥ —— Pass Through ¥ ——Pass Through ¥ |—— No Action

| Slot 0.Module_Diagnostics_Available ¥ —— Pass Through ¥ ——Pass Through ¥ —— No Action

Clean Empty Rungs) Add Empty Rungs) Rungs)

\

16

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Timer 1 Expiration (in milliseconds): 0 Counter 1 - Count From 0 To: |0

Timer 2 Expiration (in milliseconds): 0 Counter 2 - Count From 0 To: |0

Clean Empty Rungs J Add Empty Rungs J Delete All Rungs J

ﬂ NOTE
Used and unused rungs will both be deleted from the project.

4.8 Timers

Flow Chart Editor contains two Timers. The user can set the timers by typing a value into the Timer text
box. Timer values are in milliseconds (1000 Milliseconds = 1 Second).

Timer 1 Expiration (in milliseconds): |0 Counter 1 - Count From 0 To: O
Timer 2 Expiration (in milliseconds): |0 Counter 2 - Count From 0 To: 0
Slot 1.0utput_value 8 v
Slot 1.Input_value_2 v Pass Through ¥ Pass Through ¥ ° Lpul vale ®

No Action v

Clean Empty Rungs J Add Empty Rungs J Delete All Rungs J

ﬂ NOTE
Timers are discussed further in chapter 5.4 Actions.

4.9 Counters

Flow Chart Editor contains two Counters. The user can set the counters by typing a value into the Counter

text box.
Timer 1 Expiration (in milliseconds): |0 Counter 1 - Count From 0 To: |0
Timer 2 Expiration (in milliseconds): |0 Counter 2 - Count From 0 To: |0
\ o oow
Slot 1.Input_value_2 v Pass Through ¥ Pass Through ¥ Slot 1.0utput_value_8

No Action v

Clean Empty Rungs J Add Empty Rungs J Delete All Rungs J

ﬂ NOTE
Counters are discussed further in chapter 5.4 Actions.

17

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

4.10 Internal Reg

Flow Chart Editor contains two Internal Regs (Reg = register). The user can use an internal register as a
condition to trigger an action or as an action to trigger a condition.
Timer 1 Expiration (in milliseconds): 0 Counter 1 - Count From 0 To: 0

Timer 2 Expiration (in milliseconds): 0 Counter 2 - Count From 0 To: 0

| Slot 0.Module_Diagnostics_Available ¥ —— Pass Through ¥ Slot 1.0utput_value 7 7 |

Pass Through v

Slot 3.Latch_input_3 N
Slot 3.Latch_input_4

1 Slot 3.Latch_input_5

Slot 3.Latch_input_6

Slot 3.Latch_input_7

Slot 7.Cvercurrent_PWM_output

Slot 7.0vercurrent_PWM_output

Slot 11.Overcurrent_PWM_output

Slot 11.Overcurrent_PWM_output

Slot 12.1_0O_ASSISTANT _Force_IMode_active
Slot 12 Underveoltage V1

Slot 12.Undervoltage_V2

Slot 12.Medule_diagnestics_available

Slot 12.Intemal_error

Timer 1 expired

Timer 2 expired

all Rungs]

Slot 1.0utput_value 5 «
Slot 1.0utput_value 6
Slot 1.0utput_value 7
Slot 3.Latch_reset_0
Slet 3.Latch_reset_1
Slet 3.Latch_reset_2
Slet 3.Latch_reset 3
Slet 3.Latch_reset_4
Slet 3.Latch_reset 5
Slet 3.Latch_reset_6
Slet 3.Latch_reset_7
Slet 4.Counter_reset
TON Timer 1

TON Timer 2

CTU Counter 1

CTU Counter 2
RESET Counter 1

Counter 1 expired

= oLINte
on = r Intemal Reg 1 A
Internal Reg 2 Internal Reg 2 v

4.11 Flow Chart Menu Bar
4.11.1 Run

When the user clicks Run, several things happen. First, ARGEE checks the code for errors. If the code
has no errors, ARGEE downloads the code to the block. It also calculates and displays how much
memory the code has used, and how much memory is still available. Lastly, ARGEE transitions over to
the Debug screen.

F| Qs [3 Wy [

Run| Debug QOpen/SaveAs ~ NewProject — Convertto ARGEEPRO — DetTile — About

ﬂ NOTE
After the run button is pressed, the environment transitions to the Debug screen. More information
about Debug can be found in chapter 7 Debugger.

18

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

4.11.2 Debug (ARGEE Flow)

When the user clicks Debug, different things happen depending on whether the user is in Flow Chart or
ARGEE PRO.

B LB B e B

Converfto ARGEEPRO ~ SetTile About

If the user clicks Debug while in Flow Chart, the first thing the user will notice is that the Flow Chart will
enter Debug mode. As conditions become true, the user can visually observe code progression.

&

Flowchart
Project Tithe

Timer 1 Expiration {in milliseconds): 0

TBEN-51-8DXP (192.168.1.12) V3.2.3.5
Counter 1 - Count From 0 To: 0

Timer 2 Expiration {in milliseconds) (1] Counter 2 - Count From 0 To: 0

(Sl ARG EE O — Pass Though Pass Through ¥ Je_ T tion

4.11.3 Open/Save As

The Open/Save feature allows the user to save a current project or load a previous project. The user can
access the Open/Save As screen from different places depending on if they are in Flow Chart or ARGEE
PRO. From Flow Chart, the Open/Save As tab is available in the ARGEE Menu Bar. While in ARGEE
PRO, the user can access the Open/Save As screen by clicking on the Project tab.

28 L] B et B

New Project ~ Convertto ARGEEPRO SeiTile About

Open Project/Library

Choose Files | Mo file chosen

Save Project/Library

Froject Name:

Save Project With Source Code J Save Library J Save Project Without Source Code J

19

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

4.11.4 New Project

The user clicks on New Project to start a new project.

©& B [& N .

Bun Debug OpenSaveAs | NewProiect| Conveito ARGEEPRO SetTitle About

4.11.5 Convertto ARGEE PRO

The user will click Convert to ARGEE PRO when they want to leave the Flow Chart mode and enter the
ARGEE PRO Programming Environment. ARGEE PRO functions are discussed in Chapter 7.

208 2. B

ﬂ o
Once the user selects Convert to ARGEE PRO, they cannot convert back to Flow Chart.

4.11.6 Set Title

The user can click Set Title to add a name to the project.

Bun Debug OpenSaveAs NewProject Convertto ARGEEPRO | SefTitle | About

This page says
Set Project Title |

‘ ‘Noah'sARGEE3Project| ‘ ‘

"TWUIRCEK
[] .
F s FI—
Run Debug Print 10 Config ML Project Set Title About
Neoah's ARGEE 2 Project | TBEN-S1-4DIP-4DOP (Simulation) V1.2.3.4

20

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

4.11.7 About

The user can click About if they want to view the ARGEE environment and kernel firmware revisions.

* & P O[3 Wy

Bun Debug QOpen'SaveAs = NewProject = Converttp ARGEEPRO — ZefTile | About

Versions and Links:

Environment Version:		3.272.5
ARGEE Kernel Version:	3.5.2.0	
[Download link to the latest version of the environment:	Click Here	

ﬂ NOTE
The user can use the “Click Here” hyperlink to download the latest ARGEE environment.

4.11.8 Flowchart

The user will click flowchart when they want to leave the debug page and return to the ARGEE Flow Chart
screen.

?f\

Flowchart

21

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5 ARGEE PRO

5.1 The Basics

The ARGEE PRO home page is made up of Keyboard Shortcuts, Main Task, Condition, Actions, HMI
Information, Program Variables, Alias Variables, Function Blocks, Statements and Libraries.

* & = = o
Print

Run Debug 10 Config Hul Project Set Title About
Project Title: TBEN-S1-4DIP-4DOP (Simulation) V1.2.3.4
Variables and Definitions ARGEE Program
+ Keyboard shortcuts:
Press Ctri-q for list of program variables
0 = [Program Variables Press Ciri-l for list of function bleck variables
Press Cirl- for list of /0 variables
Press Ctrl-f for list of built-in functions
Name Type Press Cirl-s for list of State Names
= reg! | Number v P Ctrl-"d " coll Il el its which f
ress Ctrl-"down arrow” collapse all elements which are co] Size o
2 |req2 Number v variaples panal Main Task
= | Block select program statements by clicking op#® number area” and dragging mouse down and selecting 2 or more
4
T J comment out statements, Cjri-Spied to uncomment statem Condition & Actions
||

]
| Add Condition ||
- _—

P ——
[+ Hmi Screens (hidden) |
e—

I\ 1+ |Alias Variables fhfdden)\l HMI Screens

tm2 Timer/Counter v statements. Once the block is Selected @
.
<

[Function Block v | Add

Import Library: O

pd
<
Choose Files | No file chosen

riables & Alias Variables

5.2 Variables and Expressions

Variables are named storage locations for changing information. Expressions are a combination of values,
variables, conditions, actions, and functions that are interpreted in a predictable way by the program. The
user must understand how the expressions of the program work to be successful in writing any code. In
ARGEE 3 Pro and Pro Advanced, expressions are everything on the right side of the screen, and
variables are on the left side of the screen.

TURCK
= O R = R L
Run Debug Print 10 Config Project Set Title About
Project Title: TBEN-L5-16DXP (192.168.1.15) V3.4.2.5
Variables and Definitions ARGEE Program

+ Keyboard shortcuts (hidden)
+ Task - MainTask
0 =+ |Program Variables
Name [Type (State = Wait_For_Submit)
1 |State ‘
2 Reg1 ‘\ Number v Destination: Reg1
0.0 Assignment B
Add Variable J Expression: Regl + 1

Variables

Destination: State
01 Assignment
Expression: Check_Process_Value

| Assignment ¥ | Add Block

2 + | States

Name ;/ Add Condition
0 |Wait_For_submit
1 Check_Process_Value -

22

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ﬂ NOTE
Information on the functions available in ARGEE can be found in the Appendix 11.2 Built-in
Functions (Ctrl-f), and information on variables can be found in chapter 5.7 Program Variables.

5.3 Condition

The Condition box is where the user puts their input conditions. An example of an input condition could
be:

A digital sensor going true (or false)

An analog sensor getting into a specific range

A specific RFID tag being presented to a transceiver

A “start” command from the ARGEE HMI or any other PLC
A timer or counter expiring

A timer or counter reaching a specific value

...many other things can be used as an input condition

The Condition box also allows the user to combine several different inputs at once.

|+ Task-MainTask

0 + | Condition [/|

Assignment ¥ | AddBlock |

Condition [EXPIRED(tml} & I0 _Slotl Input_Input_walue_1

=

Assignment ¥ | Add Block |

Explaining the Example: The above Condition will only become true when timer 1 expires and
Input_value_1 goes true.

23

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.4 Actions

ARGEE allows the user to execute several Actions under a single Condition statement. There are 11
Actions available in ARGEE PRO. Please note that Actions are only available under a Condition
statement. They are excluded from While, For, If, Else If, Else statements (see ARGEE Pro Advanced
mode for more details)

B Assignment |+ Task-MainTask

® Timer Start 0+ |Condiion |

m Coil

| Add Block)

B Timer On Assignment

B Timer Off Conditicn '(I;lcr;ﬂer Start

m Trace Pmer g;

imer

® Comment [+ HMI Screens (hidden Trace
Comment

H Count Up Count Up
Count Down

B Count Down Reset Counter

B Reset Counter =

m Call

5.4.1 Assignment
The user would use the Assignment action if they want to load a value into a register.

Example of Assignment:

§ = [Copditicn [true |
_ Destimation: |0_Basic_Output_Outpet_value_1
0.0 Annagnment .
Expression: |1
Assignmipnt v | Agdd Block |
—_—

Explaining the Example: The Condition in the above statement is always “true.” The value “1” is loaded
into register Output_value_1. In other words, this means that the user’s Output 1 will always be on.

5.4.2 Caoil

The user will use the Coil action if they want an Output to be “set” if the Condition is true and “cleared”
when the Condition is false.

I—Output / Action —|

I—Condition—|

24

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Example of Coil:

Cail v)_Add Block)

Explaining the Example: When Input_value_1 is true, Output_value_2 is true. When Input_value_1 is
false, Output_value_2 is false.

5.4.3 Timer Start

The user will use the Timer Start action if they want to start a timer after the Condition has occurred.

I—Condition—"—Timer Starts H Timer Expired

If the Condition occurs again before the timer expires, the timer will restart.

I—Condition—”—Timer Starts ...I—Condition—"—Timer Starts H Timer Expired —...

Example of Timer Start:

I0 Basic Imput Input value 1

| Timer Start v | Add Block |

Destination: 10_Basic_Outpul_Output_value_2
Expression: 1

Assignment v | _Agd Block)

Explaining the Example: When Input_value_1 goes true and then false, start timer 1. When timer 1
expires, load the value “1” into register Output_value_2 (or turn on Output 2).

25

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

544 Timer On

The user will use the Timer On action if they want a timer to run while a Condition is true. The user will
normally tie an additional Action or Output to the timer expired Condition.

|—Output / Action —|
|—T|'mer On ”—Timer Expired4|
|—Condition I

If the Condition ends before the timer expires, the Action tied to the expired timer will not occur.

|—T|'mer On
}—Condition—{

Example of Timer On:

(Timer On v | AgdBlock)

Cail v | Add Block)

Explaining the Example: When Input_value_1 is true, start timer 1. When timer 1 expires, coll
Output_value_2. When Input_value_1 is false, Output_value_2 will be false.

26

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.45 Timer Off

The user will use the Timer Off action if they want a timer to run while a Condition is false. The user will
normally tie an additional Action or Output to the timer expired Condition.

|—Output / Action —|

I—Timer Off- ”—Timer Expired i Condition I Timer Off:

If the Condition starts before the timer expires, the Action tied to the expired timer will not occur.

|—Timer Off—..}—Condition

Example of Timer Off:

[Timer Cff ¥ | Add Block)

EXPIRED(tml)

(Coil v| AddBlock)

Explaining the Example: Timer 1 starts counting as soon as the program starts. When timer 1 expires,
Output_value_2 is coiled on. When Input_value_1 is true, timer 1 is reset to zero and Output_value_2
goes false. When Input_value_1 is false, timer 1 starts counting again.

27

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

546 Trace

The user will use the Trace function if they want to time stamp exactly when an event occurred. Trace can

be used to measure a programs run-time behavior, how long each state takes and even which states were
visited in which order.

Example of Trace:
The user wants to use Trace to measure how long the condition is true.

I— Condition—| l— Condition—|
| | | I

Traée 1 : Traée 1 :
2

ﬂ NOTE

The below example uses the Change of State (F_COS) trigger in the condition block. The Change
of State trigger is discussed in the Appendix 11.2.9.1 Change of State (F_COS).

0- |Codn (F_COS(I0_Basic_Input_Input_value_@,Temp_1) & IO _Basic_Input_Input_value_o=1)
Prefix Strimg: Trace 1
0.0 Trace -
Expression: [
Trace Y | Add Block
1- |condn (F_COS(I0_Basic_Input_Input_value_@,Temp_2) & IO Basic_Input_Input_valus_o=0)
Prefix Strimg: Trace 2
L0 - =
Expression: 1
Trace

v | Add Block

Explaining the Example: When Input_value_0 is true, Trace_1 time stamps that event. When
Input_value_0 goes false, Trace_2 time stamps that event. The Prefix String is a name that makes sense
to the user. The Expression can be any value or even another variable name that makes sense to the

user.

ﬂ NOTE
An example of Trace can be found in the Appendix 12.2 Trace Example.

28

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.4.7 Comment

The user can use a Comment to explain the Condition and Action statements.

=
|+

0.0 Comment [This condition is always true. /J

5.4.8 Count Up

The user will use Count Up if they want to count the number of times their condition is true. The user will
normally tie an additional Action or Output to the counter expired Condition.

Example of Count Up:
The user wants to do an Action after the same Condition has occurred two times.

——~CQutput / Action
—— Counter Expired
..counter = 0————counter =1 I counter =2
Condition——| Condition——|

I0_Basic_Input_Input_walue 1 p

[CountUp v AddBlotk)

Explaining the Example: Each time Input_value_1 is true, counter 1 counts up one time. Counter 1
expires after two counts. When counter 1 expires, Output_value_2 is coiled on.

549 Count Down

The user will use Count Down if they want to count down when a condition is true. Count Down is
normally used to counter the Count Up Action.

29

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

..counter=0 —f—counter=1 4|— counter =0——

— Condition 1—|

I— Condition 2—|

(Count Up)

(Count Down)

— counter = 14|— counter =2
— Condition 1—| — Condition 1 —|
(Count Up) (Count Up)

Example of Count Down:

The user wants to keep track of the number of guests in the store. When a guest walks in the store the
counter goes up, but when a guest walks out of the store the counter goes down.

Input_wvalue 1

I0 Basiec Inp

Counterz cnil

Preser: 1000

v | AgdBlock |

[Count Up

I0 Basic_In Input_value 2

Counterz cntl

Prewet: 1000

Explaining the Example: Each time Input_value_1 is true (or a guest walks in the store), counter 1
counts up one time. Each time Input_value_2 is true (or a guest walks out of the store), counter 1 counts

down one time.

5.4.10 Reset Counter

The user will use Reset Counter if they want to reset a counter to zero.

..counter=0 —|—counter= 14|—counter=2 — counter =0 — counter =1
|— Condition 1—| — Condition 1 —| — Condition 2—| — Condition 1 —|
(Count Up) (Count Up) (Reset Counter) (Count Up)

Example of Reset Counter:
The user wants the ability to reset the counter at any time.

30

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

I0 Basic Input Input valug

I0 Basic_ Inp Input walue 2

| Reset Counter * | Add Block |

Explaining the Example: Each time Input_value_1 is true, counter 1 counts up one time. Each time
Input_value_2 is true, counter 1 resets to zero.

5.4.11 Call

The user will use the Call action if they want to call a built-in function or user-made Function Blocks. The
Call action has a built-in help text that displays the arguments in the called function.

Example of calling a built-in function:

I0 Basic_Inp Input_value 1

o | TP START_TIMER T expcstion, tuse)
4 'START_TIMER{tm1, 1000)
[Call v | AddBlock |

Explaining the Example: Each time Input_value_1 is true, the built-in function Start_Timer will be called.

ﬂ .

The built-in function Start_Timer (and all other built-in functions) are explained in chapter 11.2
Built-in Functions (Ctrl-f). An example of calling a user made function block can be found 12.3 Call
Example

31

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.4.12 How Actions respond to Conditions

Action

Assignment

Timer start

Coil

Timer On

Timer Off

Trace

Comment

Count up

Count down

Reset Counter

Call

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 |\

Condition=FALSE

No action

No action

Resets a variable to 0

Resets the timer accumulator and
Done flag.

If timer Done flag is O, run the
timer. The timer is accumulated
every millisecond until the
accumulator >=“Expires” Preset
value. In that case, the Done flag
is raised.

Condition=TRUE

Assigns a destination variable to a
result of expression evaluation.

If the timer is not started, it starts the
timer. Otherwise, it restarts the timer.
The timer is executed in the
background until the accumulator >=
“Expired” preset value.

Sets the variable to 1

If timer Done flag is O, run the timer.
The timer is accumulated every
millisecond until the accumulator
>=“Expired” preset value. In that
case, the Done flag is raised.

Resets the timer accumulator and
Done flag.

Record trace information into a trace
buffer.

Increments the counter whenever the condition changes from false to true.

Decrements the counter whenever the condition changes from false to true.
(note - the Preset can be a negative value)

32

Restarts the counter to - 0

Executes a function or a function
block.

mwwturck.com

5.5 Program Variables

Program Variables can be added, deleted, and renamed. The user can also change the variable type by
using the Type drop-down arrow. Program Variables are usable throughout the entire program.

Variables and Definitions

Program Variables

ARGEE Prog

gyooard shortcuts:

K Press Ctrl-q for list of program variables

=
I+

Program Variables

Press Ctrl-l for list of function block variables

Name

Type

Press Ctrl-i for list of VO variables
Press Ctrl-ffor list of builtin functions.

regl

| Number

¥ || Press Ctrl-s for list of State Names

reg2

| Nurmber

tm1

tm2

entl

(=70 WS S TV TACH R

cnt2

Add Variable |

Press Ctri-"down arrow” collapse all elements which are collapsed by default, Ctrl -"lefright arrow” to adjust the size of variables
panel

Block select program statements by clicking on the "number area” and dragging mouse down and selecting 2 or more statements.
Once the block is selected, Cirl-x can be used to cut statements, Ctrl-c to copy statements, Ctrl-d to comment out statements, Ctrl-
Shifi-d to uncomment statements.

|& Task- MainTask

[1 = TAlias Variables (hidden)|

| Function Block

551

¥ | Add

Variable Name

‘ Add Condition

[£_Hmi1 Screens (hidden)

The variable name section is where the user identifies variables that are used in the program.

0 = |Program Variables 0 + | Program Variables
Name Type Name Type
1 |regt |Number i 1 |Vanable_1 | Number v
Add Variable | Add Variable
5.5.2 Variable Types

The user can set his desired variable type by selecting the Type drop down arrow.

0x

Program Variables

Name Type

regl MNumber v

1
2

reg2

Add Variable |

Fleating
String

Byte

WORD
Timer/Counter
State/Enum
Retain Mumber
Retain Float

B Number - Stores integers between -2,147,483,658 and 2,147,483,657 (4 byte signed integer).

33

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

B Floating - Stores an integer and its decimal in the register.

Variables and Definitions ARGEE Program

+ Keyboard shortcuts (hidden)
[+ Task - MainTask

0 = | Program Variables
Name Type 0+ |Condiion [true
1 variable_1 Floating v
2 variable_2 Number v) Destinati variable_1
- 0.0 Assignment
3 Number T Expression| 1.1
Add Variable |
Destinati wvariable_2
01 Assignment =
Expression| 1.1
1 = | Alias Variables (hidden)
| ‘ ‘ Assignment ¥ | Add Block)

Add Condition '

Function Block ¥ | Add

Runtime Status ARGEE program
1 TRACE
PROG CYCLE TIME :2 .
PLC CONNECTED - D [+ Task- MainTask
VARIABLE 1° 1.100000023341858 o
o o 0 = |Condition true
[=] - MainTask
|\ Local 10: SlotD) Destination: variable_1
.\ Local 10: Slot1 - Input 0o (el Expression: 1.1
. Local 10: Slot1 - Output
L. Local 10: Slot1 - Diagnostics 01 Assi ot Destination: variable_2
|| PLC_TO_ARGEE &2 G Expression: 1.1
. ARGEE_TO_PLC

ﬂ NOTE

variable_1’s type is set to Floating and variable_2’s type is set to Number. Both registers are
loaded with the value 1.1. Notice the “.1000” is cutoff in VARIABLE_2 (variable_2) but not in
VARIABLE_1 (variable_1).

B String - Stores integers and/or characters in an array.

Variables and Definitions ARGEE Program

+ Keyboard shortcuts (hidden)
[+ Task - MainTask

=]

Program Variables
Name] Type

of Array Elements: 32 (Clear field to disable array)

1 Variable_1 || String \a 0.0 - Help: STR_COPY(source sirdest str)
Add Variable J - * STR_COPY("Noah is playing with Strings”, Variable_1) I

=

* Condition [tr‘ue

34

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Runtime Status ARGEE Program
4 TRACE
PROG CYCLE TIME:5 i
PLC CONMECTED: 0 |‘: Task - MainTask

]| ALIAS VARIABLES N

VARIABLE 1 [Noah is playing with Strings_] 0 = | Condition true
~MainTask

.. Local 1Q: SlotD

. Local 10: Slot1 - Input

I aral e @ladd Ouodmoad

0o Call STR_COPY("Moah is playing with Strings", Variable_1)

1M ED

ﬂ NOTE
The Call action is discussed in chapter 5.4.11 Call. Strings are discussed in chapter 11.2.2
Strings/Arrays.

Byte - One unsigned byte. Stores integers from 0 to 255, or hex values from 0x00 to Oxff.

WORD - Two unsigned bytes. Stores integers from 0 to 65535, or hex values from 0x0000 to
OXffff.

B Timer/Counter - Timer/Counter registers can store a value from -2,147,483,658 and
2,147,483,657.

ﬂ NOTE
2,147,486,657 milliseconds is about 23 days.

B State/Enum - The user would select State/Enum (Enumeration) if he wanted to create a state
variable. State variables are used in state machines.

B Retain Number - Retains integers between -2,147,483,658 and 2,147,483,657 through a
power cycle. It syncs about every 2 minutes.

B Retain Float - Retains an integer and its decimal through a power cycle. It syncs about every
2 minutes.

35

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.5.3 Add Variable

The Add Variable button will add a Program Variable to the program.

0 = |Program Variables 0 + | Program Variables
Name Type Name Type
1 variable 1 Number v 1 e T Number o
Add Variable || 2 Niinbe v
Add Variable |
5.5.4 Program Variables Context Menu
> To access this menu, click the number in front of the variable.
No Actions Available |
Type
e
Number v
Timer/Counter ¥
U Timer/Counter ¥
Paste Above Timer/Counter ¥
Paste Below Timer/Counter ¥
Toggle Add
Button
B Make it Array - Turns the variable into an array.
0 -
0z |Program Variables 0 + |Program Variables
Name Type Name T Tune
1 reg1 Number T # of Aray Elements: 2 | (Clear field to disable array)
Add Variable) 1 |regl Number v
Add Variable
B Copy - Copies the variable so the user can paste it in another place.
B Cut - Cuts the variable out so the user can then paste it in another place.
B Paste Above - Paste a cut/copied variable above the selected position.
B Paste Below - Paste a cut/copied variable below the selected position.
B Toggle Add Button - Selecting this will place an “Add Variable” button above the variable
0 + |Program Variables 0 + [Program Variables
Name Type | Name [Type
1 |regl Mumber v Add Variable) |
Add Variable) 2 Jregt [Number v
Add Variable

B Init - The user will use Initialize if they want to pre-set the value in a Program Variable’s

register.
- 0 + [Program Variables
0 + |Program Variables
Name Type Name [Type
1 req1 Mumber v 10 N -]
Add Variable) 1 |regi | Number v
Add Variable)

36

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

The user can also Initialize an array if they want to pre-set the value in a Program Variable’s register.

0 + [Program Variables
0 + |Program Variables
Name Type Name | Type

1 regl MNumber v 1.0 [INIT: [1] =[2

Add Variable) #ofArray Elements: 2 (Clearfield to disable array)
1 regl | MNumber A\
Add Variable

ﬂ o

The user can press Control-g while in the Program Variable name area to automatically prompt
variable initialization.

B Comment - Selecting this will insert a comment line above the program variable.
Program Variables

0=+ 0 + [Program Variables
Name Type
1 |regl Number v Name | Type
Add Variable) 1 |comment| P
2 |regl | Number v
Add Variable |

37

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.6 Alias Variables

Alias Variables give friendly names to 1/0 Points and PLC Variables. In many cases, it is much easier to

understand the code when the user uses Alias Variables.

1 + |Alias Variables

Name IO Point
] Friendly 10 _Point_Mame |I0_Point
1 car_sensor 10 Basic_Input_Input_value 4
2 greenlight 10_Basic_Output_Output_value 6
3 FLC in 10_PLC_TO_ARGEE_Word4

Add Variable)

5.7 Main Task

When the user converts to ARGEE PRO, a Main Task is created. The user can only add Condition blocks
in the Main Task. Other function blocks can be created, but they need to be called from a Condition.

Variables and Definitions ARGEE Program

+ Keyboard shortcuts:
Press Ctrl-q for list of program variables

ed by default, Ctrl -“leftright arrow” to adjust the size of variables panel

mber area” and dragging mouse down and selecting 2 or more statements. Once the
ents, Ctrl-c to copy statements, Ctrl-d to comment out statements, Ctrl-Shift-d to uncomment

0 + [Program Variables Press Ctrl-l for list of function block variables

Press Cirl-i for list of I/O variables

Name Tvpe Press Ctri-f for list of built-in functions

1 |regl Number ¥ || Press Cirl-s for list of State Names
2 reg2 Humbey " | Press Cirl-"down arrow” collapse all elements which are cq)
3 tm1 Timer/Counter ¥

Block select program statements by clicking on thgg
4 [tm2 Timer/Counter ¥ | bjqck is selected, Cirl-x can be used to cut st
5 cnt1 Timer/Counter v | $13tEmants.

1

g |ent2 Timer/Counter ¥l [Task - MainTask (nidden)
Add Variable J |

[£HMI Screens (hidden)

Alias Variables (hidden)
v | Add

Function Block

NOTE

Function blocks are explained later in this chapter, and in chapter 5.8 Function Block Type.

38

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.7.1 Adding Conditions to the Main Task

If the user clicks the Add Condition button, a blank condition will be added to the ARGEE project.

Variables and Definitions

ARGEE Program

+ Keyboard shortcuts:
Press Ctrl-q for list of program variables

0 + |Program Variables Press Ctrl-| for list of function block variables
Name Type Press Ctrl-i for list of VO variables
Press Ctrl-f for list of built-in functions Condition
1 |regl Number ¥ || Press Ctri-s for list of State Names
z |reg? H.£ney " || Prass cti-"¢own amow” collapse all elements which are collagse® by default, Cirl <lefUright arrow” to acjust the size of variables
2 |tm1 Timer/Counter ¥ | | pansl
4 |tm2 TimenCounter 'Y | Block select program statements by clicking on tie#fumber area” and dragging mouse down and selecting 2 or more statements.
5 cntd T o Once the block is selected, Cirl-x can be usegdf cut statements, Cirl-c to copy statements, Cirl-d to comment out statements, Ctrl-
= Shift-d to uncomment statements.
6 cnt2 Timer/Counter ¥
Add variable) ke TEs [IIEES =z
Add Condition)
[1 = [Alias Variables (hidden)|
. i+ HMI Screens (hidden)
Function Block v | Add ‘
Variables and Definitions ARGEE Program
+ Keyboard shortcuts.
Press Ctrl-q for list of program variables
0 + [Program Variables Press Ctrl for list of function block variables
Press Ctrl for list of /O variables
Name Type Press Ctrl-f for list of built-in functions
1 |renl Number ¥ ||| Press Ctri-s for list of State Names.
2 reg2 Himber | press ctr-down arow” collapse all elements which are collapsed by default, Ctrl -“lefiiright arrow™ to adjust the size of variables
3 [tmi Timer/Counter ¥ | panel
4 tm2 Timer/Counter ¥ | 5jock select program statements by clicking on the "number area” and dragging mouse down and selecting 2 or more statements.
5 cntd Tt o Once the block is selected, Cirl-x can be used to cut statements, Ctrl-c to copy statements, Ctri-d to comment out statements, Ctrl-
- Shift-d to uncomment statements.
8 cnt2 Timer/Counter v
Agd varizole) [Task-MainTask

[1 = [Alias Variables (hidden}|

Function Block ¥ | Add

0+ ‘Conmﬁon [A

Assignment ¥ | Add Block

‘ Add Condition

NOTE

The Condition/Action relationship is similar to the If/Then relationship. For Example: “If this
condition goes true, then perform these actions.”

39

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.7.2 Adding Actions to the Main Task

Actions are selected from the Add Block drop-down menu. When the desired action is selected, the user
can click on the Add Block button to add the action to the condition.

Variables and Definitions ARGEE Program

+ Keyboard shorfcuts:
Press Ctrl-g for list of program variables

0 + |Program Variables Press Ciri- for list of function block variables
Press Clrl for list of /O variables
Name Type Press Ctrl-ffor list of built-in functions

1 regl Number ¥ ||| Press Ctrl-s for list of State Names

2 reg2 Number v Press Ctrl-"down arrow” collapse all elements which are collapsed g default, Ctrl -“leftright arrow™ to adjust the size of variables
3 tm1 Timer/Counter ¥ || panel

4 tm2 Timer/Counter ¥ | giock select program statements by clicking on the "number apa” and dragging mouse down and selecting 2 or more statements.
5 ontl TimerCounter | | Cnce the block is selected, Cirl-x can be used to cut statemgfits, Ctri-c to copy statements, Ctrl-d to comment out statements, Cirl-
= Shift-d to uncomment statements.

& cnt2 Timer/Counter ¥

Add vanaoe) |£ Task - MainTask //

0=+ ‘Condmon [

[1 + [Alias Variables (hidden)|

v | Add

Assignment

Add Block

Functicn Block

Timer Start
Coil
Timer On
Timer Off
[Screens fiader] (%
Comment
Count Up
Count Down
Reset Counter
Call

Add Condil

Variables and Definitions ARGEE Program

+ Keyboard shortcuts:
Press Ctrl-g for list of program variables

0 + [Program Variabl, Press Ctrl- for list of function block variables
Press Cri-i for listof WO variables
Name Type Press Ctri-ffor list of built-in functions
1 |regl Number ¥ ||| Press Ctri-s for list of State Names
2 reg2 Number M Press Ctrl-"down arrow” collapse all elements which are collapsed by default, Ctrl -lefiright arrow” to adjust the size of variables
3 |tml Timer/Counter ¥ || panal
4 tm2 Timer/Counter ¥ | | Block selact program statements by clicking on the “number area” and dragging mouse down and selecting 2 or more statements.
5 cntd TimenCounter)| | Once the block is selected, Cirl-x can be used to cut statements, Crl-c to copy statements, Ctrl-d to comment out statements, Ctrl-
- Shift-d to uncomment statements.
6 cnt2 Timer/Counter v
Agd varzble) [Task-mainTask

0 + | Condition [J
| 1=+ \Aliﬂs Variables (mdden}| Destination:
oo Assignment
Expression:
Function Block v | Add P
Assignment ¥ | Add Block

‘ Add Condition

NOTE

Actions are discussed more in this chapter 5.4 Actions.

40

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.7.3

Main Task Context Menu

[£ Tesk - MainTask

)

0 + | Cong -
apy
Cut Destination:
Expression:

Toggle Add
Button

Topgle Breakpoint

Paste Above

Paste Below
Paste Into

Cut

Destination:

Expression:

Comment Cut

Add Block '

Paste Into — Paste a cut/copied variable

Comment Out — Turns the statement int

into the position.

0 a comment.

Copy - Copies the variable so the user can paste it in another place.
Cut - Cuts the variable out so the user can then paste it in another place.
Paste Above — Paste a cut/copied variable above the selected position.

Paste Below - Paste a cut/copied variable below the selected position.

[E_Tasi- wainTask

£ Task - MainTask

0 = | andition

[true P

3 = | Gondtion

[true

)

Destination: I0_Slot1_Output_Output_data_word_0
Expression: |

Destination: 10_Siot1_Cutput_Output_date_word 0
Expression: 1

B Toggle Add Button - Selecting this will place an “Add Variable” button above the variable.

|£_Task-MainTask

|+ Task - MainTask

‘Condition

0+ | Condition

[true P

0x

[true

Destination: |0_Basic_Output_Output_value_0
0.0 Assignment = — = = —

Expression: |

Assignment

¥ | Add Block

e

Assignment

Destination: |0_Basic_QOutput_Output_value_0
Expression: 1

B Toggle Breakpoint — The statement becomes a breakpoint when the code is compiled and
ran. The program will not progress farther than the selected statement. This can be done from
the Edit Code screen or the Debug Code Screen.

(Edit Code Screen)

[& Task-MainTask

[+ Task-MainTask

0+ |Condition

I+

[true

+ |Condition [true

) Destination: |Q_Basic_Output_Output_value_0
o0 Assignment
Expression: 1

Assignment

Destination: |0_Basic_Output_Output_value 0

Expression: 1

41

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

(Debug Screen)

Destination: 10_Basic_Output_Output_value_0
Expression: 1

ﬂ o
For more information about Debugging, check out Chapter 7 Debugger _Debugger_1

42

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T+1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.8 Function Blocks
5.8.1 The Basics

The user will use a function block if the user wants to speed up their coding process, make their code
easier to de-bug, or simply make their programs smaller.

The user will use a function block to make there code more reusable, make their code easier to de-bug, or
make the code more readable.

TURCK
= -—
F B = I EE @
Run Debug Print 1& Config HMI Project Set Title About
Project Title: TBEN-$1-4DIP-4DOP (Simulation) V1.2.3.4

| 0= ‘ Program Variables (hidden) 7
/ /
/ |1 Function Bloiké Function_Block_Name()
|1 = ‘Allas Variables {hfdd/eﬂ| (Conditon v Add Black
2 = | Function Block/Function_E!Iock_Nﬁme y/ E Asslgnment o
Name Type Segment =
¢ / [Number v || VARIABLE v | While
Add Element) |/ ARIAB For
|
| Function Block ¥ | Add ARGUMENT If
Function Block Else If
Import Library: call
Choose Files | Mo file chosen Comment
Trace

ﬂ NOTE
For more information about how to call a function block, check out 12.3 How to Call a Function
Block

5.8.2 Function Block Options
In this section, the user can create function blocks or state names.

Function Block
» To add a function block, select Function Block from the drop-down and then click the Add button.

In ARGEE PRO, function blocks are called from the Main Task.

43

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

| Function Block v | Add |

(¥

Function Block : Function_Block_Name

Name Tvpe Segment

Function Block ‘

g Number

-

VARIABLE v

Add Element)

States
» To add a state name, select States from the dropdown and then click the Add button.

State names are used to make it easier to identify which state the program is in at any moment.

[States v| Add) 3+ [States
Function Block Name
i
Add Element |

» Make it a Constant
Additionally, the States context menu has an additional option called “make it a constant.” Make it a
Constant — Loads a constant value into the state name’s register.

lea
1+

States

Name
Const: 0 (Clear field to disable a constant)

0

Add Element |

5.8.3 Function Block Segments

Variable

The user will select Variable under the segment type dropdown menu if the users wants to define an
internal variable of the function block.

Argument

The user will select Argument under the segment type dropdown menu if the user wants to pass
arguments to the functions block when the function block is called by the Call action in the Main task or
from another function block. An Argument can be a number, a string, a variable or another function block.
All the Argument elements should be defined as the first elements of the function block and their order
determines the order of passing arguments.

5.8.4 Function Block Statements

If the user wants to use Statements in the Main task, the user needs to convert their program to ARGEE
PRO Advanced Mode.

44

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.8.4.1 While

The While statement is one way to express a loop.

Example of While:

1+ While

_ Destination: [teration
0 Assigmment
Expression: 1
[Tteration <= 1e@ p
Destination: |0_Basic_Output_Output_value 0
10 Assignment = = = = =
Expiression: 1
cal Help: START TIMER(Timer expiration_time)
= ¥ START_TIMER(tm1, Iteration*10)
12 WaitUntil [EXPIRED(tm1) p
: Destination: [O_Basic_Output_Output_value_0
13 Assignment
Expression:
Help: START TIMER(Timer expiration_time)
14 Call -
- F START_TIMER(tm1, lteration*10)
15 WaitUntil [EXPIRED(tm1) p
Destination: [teration
16 Aszignment
Expression: [teration + 1

Explaining the Example: This code is used to cycle an output at 10ms increments. During the first
iteration, the output stays on for 10ms. During the second iteration, the output stays on for 20ms. This
loop continues for 100 iterations.

ﬂ NOTE
The Wait Until statement is discussed later in section 6.4 Wait Until.

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

45

5.8.4.2 For
The For statement is one way to express a loop.

Example of For:

Iterator Variable: |teration
0+ |For Start Value: 1
To Value: 100
) Destination: [0_Basic_Output_Output_value 0
L0 | Assignment
Expression: 1
Help: START_TIMER(Tuner expiration_time)
0.1 Call
- START_TIMER(tm1 Iteration*10)
02 |WatUntl [EXPIRED(tml) p
Destination: |0_Basic_Output_Output_value_0
03 | Assigmment = = = = -
Expression: ()
o cal Help: START TIMER/Timer expiration_time)
= START_TIMER(tm1 Iteration*10)
05 |WatUntl [EXPIRED(tml) p

Explaining the Example: This code is used to cycle an output at 10 ms (millisecond) increments. During
the first iteration, the output stays on for 10ms. During the second iteration, the output stays on for 20ms.
This loop continues for 100 iterations.

ﬂ NOTE
The Wait Until statement is discussed later in section 6.4 Wait Until.

46

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.84.3 If
The If statement is similar to a Condition. If a condition is true, certain actions will be executed.

Example of If:

=]

If |iD0c:r‘_0pen J

Destination: Light

=]
=1

L0 | Assignment

Expression: 1

Explaining the Example: If the door is opened, turn on a light.
5.8.4.4 Elself
The Else If statement has to follow an If statement.

Example of Else If:

b = hi g Door_Open

k.

Destimation: Light
a8 Assignment

Expression: 1

Assignment ¥ | Add Block |

1= |Elself |!Door Open

Destimation: Light
10 Assignment
Expression: 0

Explaining the Example: If the door is opened, turn on a light. If the door is not opened, turn off the light.

ﬂ NOTE
“I” is the Boolean symbol for NOT. Boolean Logic is discussed in Chapter 11.2.7 Boolean Logic.

47

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.8.45 Else
The Else statement has to follow either an If or an Else If statement.

Example of Else:

= | Door_Open

_ Diestination: Ijght
L0 | Assigement

Expression: 1

Agsignment T | Add Block

1= |Ehe

Destinatien: Light

Expression: 0

Explaining the Example: If the door is opened, turn on a light. Otherwise, turn the light off.

5.9 Libraries
5.9.1 Whatis aLibrary?

A library is an ARGEE element containing only State Names and Function Blocks (no Program variables
nor Alias variables), and is designated by the “.st” (Structure Text) file extension. Libraries are useful for
users who create many ARGEE programs that would require similar Function Blocks, i.e. RFID
reading/writing, 10-Link programs, a timer-based halting function, etc.

In addition to creating libraries, the user can download official ARGEE libraries from www.turck.com.

5.9.2 Creating a Library

The user can create their own library by first clicking on the Add Library button.

Library : MNew_Library

Add Librar:.r I » Version : 1.0

Function Block ¥ | Add)

I
K}

The user then creates their desired function blocks.

2+ |Librﬂry[: New_Library Version: 1.0
1 = |Eunction Block : Function_Block_Name Regular v
Name Type Segment
] Number v || VARIABLE v
Add Element |
Function Block ¥ | Add |

48

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Once the library is complete, the user will select Export Library from the library context menu.

Cut

g_ Paste Above rary Version: 1.0 |
= Paste Below
1 Function_Block_Name Regular v
Toggle Add
Number v || VARIABLE v

1 3
Function Block ¥ | Add)

5.9.3 Importing a Library

The user can import an already pre-built library by clicking on the Choose Files button.

Organize » Mew folder
[Favorites 3 I>, [
: B Desktop Type: ST File
| C—hDOEE F||E.‘S 4. Downloads Size: 283 bytes

:_._i Recent Places = Date modified: 8_-'I28_-'201? 11:19 AM

Wait_Lib_v1_0
4 Libraries

= NDacuments

ﬂ NOTE
If the user try’s to import a library with the same name as an already installed library, ARGEE will
ask the user remove the first library before importing the second.

ﬂ NOTE
More information about Turck supported libraries can be found in Appendix Il - Libraries

49

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.10 HMI Screens

The HMI editor is integrated into the code editor page. The user can only view their HMI after they have

built an HMI.

Variables and Definitions

1=
I+

Program Variables

Name Type

reg1 Number v

reg2 Number v

it TimerCounter ¥
m2 | Timer/Gounter v
ent! | TimeriGounter v
ent2 | TimeriCounter v
Add Variable)

[ER TR NESENIRY N JE

[1 +_[Alias Variables (hidder)]

Function Block v | Add

ARGEE Program

+ Keyboard shortcuts:
Press Ctrl-q for list of program variables

Press Cirl-l for list of function block variables
Press Cirl-i for list of /O variables

Press Ctrl-f for list of built-in functions

Press Ctrl-s for list of State Names

Press Ctrl-"down arrow” collapse all elements which argfcollapsed by default, Ctrl -"leftright arrow” to adjust the size of variables
panel
Block select program statements by clicking on ‘number area” and dragging mouse down and selecting 2 or mare statements.

Once the blockis selected, Cirl-x can be used ut statements, Ctrl-c to copy statements, Ctrl-d to comment out statements, Ctrl-
Shift-d to uncomment statements.

[+ Task-MainTask

/
‘ Add Condition l /
/
/

[+ HMi Screens /

HMI Screen ¥ | Add Screen

| HMI Screen

HMI Grid Screen
HMI Image Group
Comment

ﬂ o
Information on the HMI is available in chapter 9 ARGEE HMI.

50

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.11 Keyboard Shortcuts

ARGEE 3 has many keyboard shortcuts to help make the user experience much easier. By default, the
keyboard shortcuts are collapsed.

» Click on the + to expand the keyboard shortcuts.

TURCEIK
= -
~ (T

F & = GIRNE: ’

Run Debug Print 10 Config Hit Project Set Title About
Project Title: TBEN-51-8DXP (192.168.1.12) V3.2.3.5

Variables and Definitions ARGEE Program

+ Keyboard shortcuts

Press Ctrl-g for list of program variables
0 - |Program Variables | Press Ctr for listof function biock variables

Press Ctri-i for list of l/C variables

Name Type Fress Cil- for list of builtin functions
1 |regl Number ¥ || Press Ctrl-s for list of State Names
2 reg2 Number M Press Ctrl-"down arrow” collapse all elements which are collapsed by default, Ctrl -"leftright arrow™ to adjust the size of variables panel
3 tmi Timer/Counter v
= Block select program statements by clicking on the "number area” and dragging mouse down and selecting 2 or more statements. Once the block is selected, Ctrl-x

4 [tm2 Timer/Counter ¥ | can be used to cut statements, Cirl-c to copy statements, Cirl-d to comment out statements, Ctri-Shifi-d to uncomment statements
5 cntl Timer/Counter v

+ Task- MainTask
6 cnt2 Timer/Counter v L
Add Variable) Add Condition

Alias Variables (hidden)) [Rmi screens (hidden)
Functicn Block v | Add

5.11.1 List of Keyboard Shortcuts:

Ctrl - q Brings up a list of Program Variables

m Ctrl - L Brings ups a list of Function Block Variables (can only be initiated from inside of a
Function Block)
W Ctrl - i Brings up a list of I/O Variables
W Ctrl - f Brings up a list of Built-In Functions available at current location
B Ctrl - s Brings up a list of State Names
B Ctrl — “Down Arrow” Collapses all elements which are collapsed by default
B Ctrl — “Left/Right Arrow” Adjusts the size of the Variable and Definitions panel
B Selecting Multiple Statements — Click the white space, hold and drag down until the
statements turn green.
[£_Task - MainTask [£Task - mainTask
0+ |Condion [true P 0+ |Condiion [true P
20 pssignment ::f:;t::: 20,3\0‘1,0u(put,0u|nul,data,wwd,D a0 Aasigment ::I::::' \10,5\011,Ouwut,ompu(,data,ward,D
Assignment ¥ | Add Block Assignment ¥ | Add Biock.
1% | Condiion [true P 1+ | Gondtion [true A
0 ‘ -~ :c:;t::: IWO,S\ntLOu(DuLOuIDuLdata,wwdj i ‘ _ g::‘::::: LO_S\I:H_Dutput_Dmpul_data_wurdJ
B Ctrl — x Cuts the selected statement(s)
B Ctrl — c Copies the selected statement(s)
B Ctrl — z Undoes the previous action (ARGEE 3 remembers 32 actions)
W Ctrl - y Redoes the previous action (ARGEE 3 remembers 32 actions)
W Ctrl — d Comment out selected statement(s). This turns the selected statements into
comments, and will not be compiled when the code is run.
[£Task- MainTask [Task - MainTask
0+ |Condten |true P 2= | Condition [true g
50 |} ‘ - Dae:::::: Lo,swoﬂ,ompm,omput,data,mrdj g::::::::I‘G_S:n_DJ\:J_OJ\n.n_dms_.\':-d_:

51

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

B Ctrl — Shift — d Uncomment out selected statement(s). This turns the comments back into

statements, and will be compiled when the code is run.

[Task - MainTask

0: |Condtion [true

Destination: 10_Siot1_Output_Output_dsta_werd 0
Expression: 1

A

Destination: |O_Slot1_Output_Output_data_word_0
Expression: |

B The user can press F1 at any time to bring up a list of the keyboard shortcuts.

Help Screen:

Keyboard shortcuts:

Press Ctrl-q for list of program variables
Press Ctrl- for list of function block variables
Press Ctri-i for list of /0 variables

Press Ctrl-ffor list of built-in functions

Press Cirl-s for list of State Names

Press Cirl-"down arrow” collapse all elements which are

collapsed by default, Ctrl -"left/right arrow™ to adjust the size of
variables panel

Block select program statements by clicking on the "number area™
and dragging mouse down and selecting 2 or more statements.
Once the block is selected, Cirl-x can be used to cut statements,
Ctrl-c to copy statements, Ctri-d to comment out statements, Ctrl-
Shift-d to uncomment statements.

Close

B The user can press F2 to display a read-only view of the project. This is useful when doing
side-by-side editing.

@ On TBEN-51-30XP - Google Chrome [E=E) rurcK
2 —
- =
@ aboutblank -— !
10 Confi HMI Project SetTitle About

TBEN-51-8DXP (192.168.1.12) V3.2.3.5

=]
e R ARGEE Program

Keyboard shortcuts (hidden)
Task-MainTask

ARGEE Program

[+ Task - MainTask 0+ |Condition [true P
)
0 = |Condition true Destination: |0_Basic_Output_Output_value_0 \
w0 Assignment B
Expression: 1 I
00 pe ¢ | Destination: 10_Basic_Output_ Output_value_0
X signment
Expression: 1 Assignment v | Add Block) |
|
1~ |Condition true 1+ |Condiion [true P :
. R Destination: |O_Basic_Output_Output_value_1 |
1o Acsignmene | Destination: 10_Basic_Output_Output_value_1 0 o —
gnams Espression: | Expression: 1
Assignment ¥ | Add Block
[+ BT Screens (hidden)
Canditinn w | sainieae) h

NOTE

To bring up a read-only window that is scrolled to a specific function block, double-click the help
text in its Call block, then press F2.

52

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.12 ARGEE PRO Menu Bar
5.12.1 Debug (ARGEE PRO)

When the user clicks Debug while in ARGEE PRO, they get a brand-new menu bar with many more
options. The ARGEE PRO debugger is discussed in Chapter 7 Debugger.

] - >
W i
& | & = D
Run Debug Erint 10 Config Hil Project Set Title About
5.12.2 Print

A print button is available in the ARGEE PRO menu bar. The user can click Print if they want to print out a
copy of their project.

] —— >
j?. =] s [+] i
Run Debug Erint 10 Config Hul Project Set Title About

5.12.3 10 Config (I/O Configuration)

The user can configure all the device parameters by clicking on 10 Config. This is extremely useful for 10-
Link, RFID and Analog devices.

[- -
3 S [=E]1 8 B B O
{ = — .
Run Debug Print 10 Config MI Project Set Title About
Edit Code

Project Title: TBEN-51-8DXP (192.168.1.12) V3.2.3.5
- [BEN.S1_8DXP GW Basic Parameters
« Diagnostic
« |nput_Latch_Cho0_7
« Ext Func_ Digital 1 i -
- Ext__Func_ Digital_2 Activate_output0 yes ¥
« Ext__Func__Digital_3 Manual_reset_after_overcurr__0 [no ¥
-« Ext__Func__Digital_4
« Ext__Func__Digital_5)
« Ext__Func_ Digital & Activate_output_1 yes ¥
« Ext__Func__Digital_7 Manual_reset_after_overcurr__1 [no ¥
» Ext__Func__Digital_8
« Module_status

Activate_output_2 yes ¥

Manual_reset_after_overcurr__2 [no v

5.12.4 HMI

The HMI tab allows the user to view their HMI screen. This tab becomes active after the user has already
built an HMI. The ARGEE HMI is discussed in Chapter 9 ARGEE HMI.

3F

Run

{B

Debug

= —a-
S
Print 10 Config

O % B ©

HI Project Set Title About

53

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

5.12.5 Project

When the user clicks on the Project tab, they will have access to a completely new ARGEE menu bar.

3 & = > - NEl [O

Run Debug Print 10 Config Proiect Set Title About

4

g B9

"+
Edit Code New Project Delete Project Run Without Source ARGEE PRO Advanced Mode

5.12.6 Edit Code

The user can find the Edit Code tab on many screens in the ARGEE 3 Flow and the ARGEE 3 PRO
environment. The user will click Edit Code when he wants to leave his current location and return to the
or ARGEE PRO programming page.

£ "+
New Project Delete Project Eun Without Source ARGEE PRO Advanced Mode

5.12.7 Delete Project

Delete Project is different from New Project because it erases the project from the device then starts a
new project.

[) Yl
Edit Code New Project Delete Project Run Without Source ARGEE PRO Advanced Mode

5.12.8 Run Without Source

Selecting Run Without Source will allow the device to run without displaying the actual code. This feature
blocks the “end user” from viewing the program that the user wrote. Run Without Source is one of
ARGEE's security protocols.

g E 4
Edit Code New Project Delete Project Run Without Source ARGEE PRO Advanced Mode
X

This page says:
You are about the ovenwrite the project in the device without the source

codell!
Click "OK" to proceed

54

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

¥ & Qg [3 Wy 5 D

Run Debug Open/Save As New Project Convert to ARGEE PRO Set Title About
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5

Timer 1 Expiration (in milliseconds): 0 Counter 1 - Count From 0 To: 0
Timer 2 Expiration (in milliseconds): 0 Counter 2 - Count From 0 To: 0

Slet 0.Medule_Diagnestics_Available v Pass Through ¥ Pass Through ¥ MNo Action v

Slot 0.Module_Diagnostics_Available v Pass Through ¥ Pass Through v Mo Action M

Slot 0.Module_Diagnostics_Available v Pass Through ¥ Pass Through v Mo Action M

Slot 0.Module_Diagnostics_Available v Pass Through v Pass Through v Mo Action M

Clean Empty Rungs J Add Empty Rungs J Delete All Rungs J

If the “end user” tries to log into this device, they will receive the following error message:

Project without the source code is loaded into the device
Erase it via the web server to be able to load new ARGEE programs!!!!

ﬂ NOTE
The user needs to save a master copy of the program before clicking Run Without Source. If the
user fails to do this, he will be unable to edit or even view the code in the future.

5.12.9 ARGEE PRO Advanced Mode

Clicking on the ARGEE PRO Advanced Mode button will expose several new features to the user. In
ARGEE PRO Advanced Mode, the user will be able to use the While, For, If, Else If, Else, and Wait Until
statements in the Main Task. They will also be able to use multitasking.

& L3

', Ty
Edit Code Mew Project Delete Project Eun Without Source ARGEE PRO Advanced Mode

ﬂ NOTE
ARGEE PRO Advanced Mode is covered in greater detail in chapter 6 ARGEE PRO Advanced
Mode.

55

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

6 ARGEE PRO Advanced Mode

6.1 The Basics

ARGEE PRO Advance Mode allows the user to use the While, For, If, Else If, Else and Wait Until
statements in the Main Task. It also allows function blocks to be made into their own task. This feature is

called multitasking.

>
ARGEE PRO Advanced Mode.

To get from ARGEE PRO to ARGEE PRO Advanced Mode, the user must click on Project, and then

[] E ol
= 5= = lE [
x = = |
Run Debug Print 10 Config Il Project Set Title About
% [©) 0 2
Edit Code New Project Delete Project Run Without Source ARGEE PRO Advanced hMode
TWUIRCIK
R T— —— G [
Run Debug Print 10 Config Hl Project Set Title About
Project Title: TBEN-S1-4DIP-4DOP (Simulation) V1.2.3.4

Variables and Defini-

‘ 0= \ Program Variables (Pnddenj|

[1 = [Alias Variables (hidden)|

2 Function Block : Function_Block_Name | Regular v

Name

0

Add Element)

Function Block ¥ | Add)

| L Regular
| Number

Segment
VARIABLE v

Add Library l
Import Library:

Choose Files | No file chosen

ARGEE Program

+ Keyboard shortcuts (hidden)
[t Task - MainTask

[Condition v Add Block |
B Condition 7
[| Assignment [ynction_Block_Namé()
|j[While Add Block /
~|For /

/

E A

Else If

Else

Call

Comment /

Trace

NOTE

Multitasking is explained in chapter 6.2 Function Block Type.

56

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

6.2 Function Block Types
6.2.1 Regular

The user will use function block type Regular when the user wants the function block to run only when the
function block is called from the main task or from another Function Block.

6.2.2 Task (Multitasking)

The user will use function block type Task when the user wants the function block to run in parallel with
the main task. This concept is called multitasking.

6.3 Wait Until

Wait Until is a very powerful statement that halts the execution of a task until a certain condition is met. .

Example of Wait Until:

0 | Wat Until I:Do or_Open /J
Destination: Light

1| Assignment
Expression: 1

Explaining the Example: Wait until the door is opened, then turn on a light.

Example Multi-tasking using “Wait Until 1”: The task will stop executing for one cycle to allow other tasks
to be executed.

2 + |[Function Block : Function_Block_Name Task v

Name Type Segment
0 Multitask Number v | VARIABLE ~
Add Element |

Function Block v | Add |

|: Task - Function_Block_Name

0+ |whie (1 ls P
Destination: Output_1
0.0 Assignment
Expression: Input_1
01 Wait Until 11

-~

57

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

7 Debugger

7.1 Debugger Information

If a user is using loops and function blocks in their code, it can become very complicated to follow the next
instruction. To help with this, the ARGEE3 environment assists the user by inserting a “breakpoint” in
every executable statement in the program. Due to this implementation, the user just needs to use Halt
and Step command to stop and step through their code. In addition to Halt and Step, toggling Break
Points and using the Trace feature are also useful tools for debugging.

7.1.1 Single Task

If the user created a single-task ARGEE program (i.e. ARGEE PRO Advanced mode has not been
enabled), the debugger starts at the top of Main Task and executes it block-by-block down the page until it
gets to the end. Then, it starts over. This cycle continues until the user halts ARGEE, or the device is

powered off.

7.1.2 Multiple Tasks

If the user created an ARGEE program that uses multiple tasks, the Main Task will execute to completion,
then the next task will execute, this process continues until all tasks have been executed. No two tasks
may be executed at the same time. However, the user may switch between tasks. This is accomplished
by using the Wait Until statement.

ﬂ NOTE
The Wait Until statement is discussed in 6.3 Wait Until.

7.1.3 Break Points

The user can add break points to their code from both the Edit menu and the Debug menu. The Toggle
Break Point command is located in the Main Task and function block context menus.

NOTE
ﬂ More about Break Points is discussed in 5.7.3 Toggle Breakpoint.

7.1.4 Trace

Trace is a very powerful Debug tool. The user will use the Trace function if they want to time stamp
exactly when an event occurred. Trace can be used to measure a programs run-time behavior, how long
each state takes and even which states were visited in which order.

NOTE
ﬂ More about Trace is discussed in 5.4.6 Trace and 12.2 Trace Example

58

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

7.1.5 Order of Operation — Calls & Function Blocks

If the user is debugging an ARGEE program that contains function blocks, and is advancing the program
one step at a time, they will find that the debugger appears to skip around the program when a Call block
is reached. This is because when ARGEE executes a Call block, it jumps down to its function block’s
definition, and executes that function block-by-block. As soon as the function block has been executed,
ARGEE will return to the Call block’s location, and continue down the program.

[" Task - MainTask

Condition Sensor 2=0

00 Call Belt_1_On{)

1
2
5 1+ |Condition e
: o
[+ Function Block - Run_Belt_1()
3 ..
4

Assi . Destination: Belr_|

Expression: |

¥

Destimation: Heli_

1 Assignment

Expression: 0

Explaining the Example: This is the sequence of calls of an ARGEE program containing a Function
Block.

59

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

7.2 Debug Menu Bar (ARGEE PRO)

When the user clicks Debug while in ARGEE PRO, they get a brand new menu bar with many more
options. The user can also see the status of every variable, input, output, timer and counter in their

program.

] -— -

v i
F | 8| @ = [P}l @ D
Run Debug Print 10 Config HiMI Project Set Title About

"TWUIRCIK
&= I > > A
Edit Code Hul Halt Step Continue Modify Vars
Loadable code size 1210 bytes(out of 43008 bytes) Project size: 2228 bytes (out of 262144 bytes)
Runtime Status ARGEE program
L TRACE

PROG CYCLE TIME:2

BLC CONNECTED: 0 [Task - MainTask

VARIABLE 1: 0 ;

VARIABLE 2: 0 0+ |Condition 10_Sloti_Input_Input_value_0

= L -MainTask

v Locall0: TBEN_S1_8DXP_GW . Destination: Variable_1
|| Local I0: Basic - Input 0.0 Assignment

Expression: 0
.\ Local 10: Basic - Output

. Local I0: Basic - Diagnostics

.\ Local 10: Diagnostic - Input

. Local I0: Input_Latch_Ch0_7 - Input

.\ Lecal 10: Input_Latch_Ch0_7 - Qutput

Destination: Variable_2
Expression: 0

|!:‘

Assignment

F FH EHFEEE

NOTE
ﬂ The blue links in the left hand column are clickable and will center the window on that specific
area of the code. Active conditional statements (while,for,ifs/conditions) show up as green.

Inactive conditions show up as gray. Wait_until statements that are actively waiting will show with
yellow background.

7.2.1 Halt

The user will use Halt to pause execution of the ARGEE program.

B om| o I> A
Edit Code

Halt Siep Continue Modify Vars

T
=

7.2.2 Step

If the ARGEE program is halted, Step allows the user to step through the code, one line at a time.

7 =3 wm (x| P 7

Edit Code HI Halt Shep Continue Modify “ars

60

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

7.2.3 Continue

If the ARGEE program is halted, Continue allows the program to resume normal execution.

. m x| P /

Edit Code HMI Halt Step Continue Modify Vars

7.2.4 Modify Vars (Modify Variables)

Clicking the Modify Vars button will allow the user to manually change variables in the Runtime Status
window. Recently modified variable values show up with “yellow” backgrounds.

(% 00 > > A

Edit Code I Halt Shep Continue Modify “Vars

\ 4

Finish Modifications
Project Title: TBEN-51-8DXP (192.168.1.12) V3.2.3.5

Runtime Status ARGEE Program

J} TRACE
PROG CYCLE TIME :2 i
PLC CONNECTED: 0O [£ Task- MainTask

VARIABLE 1: 25

VARIABLE 2: |1[m|

“MainTask) Destination: “ariable_1
|| Local 10: TBEN_S1_8DXP_GW 0.0 Assignment | e ssion: 0
.. Local 10: Basic - Input
L\ Local 10: Basic - Output . . Destination: “ariable_2
/! Local I0: Basic - Diagnostics AT Expression: 0
.. Local 10: Diagnostic - Input

0 + |[Condition 10_Sloti_Input_Input_value_0

|D

7.2.5 Finish Modifications

When the user is done modifying variables in the Runtime Status window, he can click on Finish
Modifications to apply those changes.

Einish Modifications

% il > > 7
Edit Code HMl Halt Step Continue Modify Vars
Project Title: TBEN-$1-8DXP (192.168.1.12) V3.2.3.5
Runtime Status ARGEE program
L TRACE
FROG CYCLE TIME:2 -
PLC CONNECTED: 0 [+ Task- MainTask
VARIABLE 1: 25 N
VARIABLE 2- 100 0 + |Condition 10_Slot1_Input_Input_value_0
= L -MainTask
|| Local I0: TBEN_S1_8DXP_GW 00 o ; | Destination: Variable_1
! Local 10: Basic - Input i AT Expression: 0
|| Local I0: Basic - Output
/! Local I0: Basic - Diagnostics .,) Destination: Variable_2
|| Local I0: Diagnostic - Input 01 Assignment | o assion: 0
.| Local I0: Input_Latch_ChO_7 - Input
61

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

8 ARGEE Simulation Mode

For individuals new to programming, or unfamiliar with ladder logic, ARGEE offers a simulation mode. The
simulation mode enables users to write and test their program without investing in any hardware. Below are
the steps needed to implement the Simulation Mode.

8.1 Opening the Environment

» Open the ARGEE Environment and double click on argee_startup.html.

Mame Date modified Type
Earlier_Environments 13172017 1:36 PM File folder

internal 173172017 1:36 PM File folder
r@ argee_startup.html 1/31/2017 136 PM_ Chrome HTMIL Do..]

ﬂ e
ARGEE only opens up in HTML 5 compliant web browsers such as Google Chrome or Firefox.

8.2 Logging into Simulation Mode
» Click Enter Simulation Mode.

Program Mode
ARGEE Device IP Address:
192.168.1.254

Enter Program Mode

Simulation Mode

Enter Simulation Mode{i

8.3 Selecting Device to Simulate

Select a device to simulate from the drop down menu.

Select Device to Simulate Select Device to Simulate Select Device to Simulate

[Invalid Device (please change) %I | TBEN-L4-16DXP Y | TBEN-L4-16DXP |

_Smuiate) ‘ (“smuiatel
TBEN-L5-8DIP-8DOP k
TBEN-L4-8DIP-8DOP
BLCEN-4M12MT-4AI4A0-VI
BLCEN-2M12MT-2RFID-S
BLCEN-8M12LT-4I0OL-8XSG-P
TBEN-S1-4DIP-4DOP
TBEN-S1-8DXP
TBEN-L4-8I0L
| TBEN-L5-810L
TBEN-S2-410L -

62

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ﬂ NOTE

B Not all ARGEE 3 supported devices are available in simulation mode.

B The default Simulation Mode environment is Flow Chart

8.3.1 Flow Chart Simulation Mode

» To force an input value, double-click the input

g

Flowchart
Project Title TBEN-51-8DXP (192.168.1.12) V3.2.3.5
Timer 1 Expiration {in milliseconds): 0 Counter 1 - Count From O To: 0
Timer 2 Expiration {in milliseconds) (1] Counter 2 - Count From 0 To: 0

Pass Through

Pass Through » -1::'_:: Mo Ackon .

8.3.2 Pro Simulation Mode

» To force an input value, Click the Modify Vars button.

Fg 1fi > > 7

Edit Code I Halt Step Continus IModify “ars

\ 4

» Enter the input value, and select Finish Modifications

Finish Modifications

Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Runtime Status ARGEE Program
)| TRACE
PROG CYCLE TIME :2 _
PLC CONNECTED: 0 [+ Task- MainTask
WARIABLE - s 0+ |Condiion 10_Slot1_Input_Input_valus_0
VARIABLE 2 [1og]
] TMainTask) Destination: “Variable_1
|\ Local I0: TBEN_S1_8DXP_GW 00 Assignment

Expression: 0
. Local 10: Basic - Input

. Local 10: Basic - Output .)
|\ Local I0: Basic - Diagnostics 01 Assignment
. Local 10: Diagnostic - Input

Destination: “Variable_2
Expression: 0

HEFHHEO

ﬂ o
Timers in Simulation Mode may not be as accurate as using a real ARGEE device.

63

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

9 ARGEE HMI

9.1 The Basics

The user will use the HMI screens if the user wants to create an HMI. The ARGEE HMI is composed of
screens, sections and sections elements. The ARGEE HMI can also be viewed on any device that is on
the network by going to http://(Device IP Address)/hmi.html in a Google Chrome or Firefox web

browser.
-—
F & = PR [
Run Debug Print 1O Config Hul Project Set Title About
Project Title: TBEN-51-8DXP (192.168.1.12) V3.2.3.5

Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hidden)

+ Task-MainTask (hidden, |
[0 = [Program Variables (hidden)| ke () — |

- I/

[£ HMIScreens =

| HMI Screen v | AddScreen |

HMI Screen

HMI Grid Screen
HMI Image Group
Comment

[1 + TAlias Variables (hidden)|

Function Block ¥ | Add

9.2 HMI Screen

When the user selects HMI Screen from the HMI drop-down list and clicks Add Screen, the users will see
a new rung of logic pop-up. The user can enter that specific HMI screens title in this box. The user will
also have the ability to add a new section to the HMI by highlighting Section and clicking Add Section.

[[=}

HMI Screen [HHI screen title goes here A]

| Section v |

Section

Add Section

omment

9.2.1 Sections

After the user adds a new section, the user will be able to add elements to the HMI screen by highlighting
the desired element and clicking the Add Section Element button.

0 = | HMI Screen [HHI screen title goes here)
0.0 + Section I:Secticm title goes here AI
Display Mumber/State/String ¥ | Add Section Element J

Display Number/State/String

Display Nurnber With Value Range
Enter Mumber/String

Enter State

Submit Action

Comment

64

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

http://(device/

9.2.1.1 Display Number/State/String

The user will use the Display Number/State/String element if the user wants to display a number, state, or

string in the HMI.

Example of Display Number/State/String:

- -—
o
F & = P8 2
Bun Debug Print 10 Config Hui Praject SetTitle About
Project Title: TBEN-51-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hiddern)
[+ Task- MainTask
0=+ | Program Variables
0+ |condition [true 4
[Name [Type
1 |Registerj | Number M _ Destination: Register_1
Add Variable | oo o ——
Assignment ¥ | Add Block)
[1 = TAlias Variables (hicden)|
Conditi v K
Function Block ¥ Add gnciion m)
[+ HMI Screens
0+ |HmiScreen f1nventory |)
00 + Section | [[ups I /j
Title: Total
000 gggg#:;mbeﬂ Variable Register_1
Units: ICup(s_) I
(HMI View):
EdiCode Debug

To test the page on the device (click here:

Screens

Inventory
I Cups I
Total |1 Cupis)

Explaining the Example: The user created an inventory HMI screen that shows how many cups they
currently have. After the user wrote the code, the user clicked Run and then View HMI in the ARGEE

menu bar.

65

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

9.2.1.2 Display Number with Valid Range

The user will use the Display Number with Valid Range element if the user wants to make sure a number
displayed on the HMI stays within a certain range. If the number is within a certain range, the associated
HMI section will be green. If the number is outside the specified range, the associated HMI section will be

red.

Example of Display Number with Valid Range:

-—

=
F @ == G
BRun Debug Print 1 Config Hull Project SetTitle About
Project Title: TBEN-51-8DXP (192.168.1.12) V3.2.3.5
+ Keyboard shortcuts thidden)
Variables and Definitions N
0+ |condition [true 4
0+ ‘ngram Variables Destination: Register 1
00 Assignment i =
‘ Name ‘ Type Expression: 2
1 ‘Register 1 ‘Number v
= Assignment ¥ | Add Block
Add Variable) —
Condition ¥ | Add Block
[1 = T[Alias Variables (hidden)|
Function Block v | Add [+ HMi Screens
0+ |HMIScreen [Tnventory 4
00 + Section [[ups ,j
Title: Total
Variable: Register_1
Display Number e
oy With Valid Range | UMts: Cup(s)
Min Valid Value: 2
Max Valid Value: 10
(HMI View)
p
Inventory
Cups
|'Ibtal |2 Cup(s) |
P
Inventory
Cups
Toul |

Explaining the Example: The user created an

inventory HMI screen that shows how many cups the user

currently has in inventory. After the user wrote the code, the user clicked Run and then View HMI in the

ARGEE menu bar. When there is only one cup
know they need to order more cups.

left in the inventory, the HMI turns red, letting the user

66

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

9.2.1.3 Enter Number/String

The user will use the Enter Number/String element if the user wants to create an editable field on the HMI.

Example of Enter Number/String:

5

Run Debug

Project Title:

1 -
= == [v]
Print 1C Config HMI Project Set Title About

TBEN-S1-8DXP (192.168.1.12) V3.2.3.5

Variables and Definitions

Keyboard shortcuts (hidden)

ARGEE Program

Add_Cups_To_Inventory

Destination: Add_Cups_To_Inventory
Expression:[(]

Destination: Register_2
Expression: R_Reg'slu_z + Register_1)

g Block)

Remove Cups_From_Inventory

Destination: Remove_Cups_From_Inventory

Expression: 0

Destination: Register 2
Expression: (Register_2 - Register_1)

Add Block)
aasiock)

0 + |Program Variables
Name Type
1 |Register_1 | Number v
2 |Register 2 | Number v
3 |Add_Cups_To_Inventory | Number v
4 |Remove_Cups_From_Inventory | Number v
Add Variable)
[1 = TAlias Variables (hidden)|
Function Block v Add)
E

1=

I+

o
=1
I+

HMI Screens

Section [Cups /3

Title: Total |

0.0.0 Variable: Register 2 |

Units: Cup(s) |

Ttle: Add/Remove Inventory

0.0.1 Variable: Register_1 |

Units: Cup(s) |

os Title: Add Cups to Inventory |

- Variable: Add_Cups_To_lnventory

o Tite: Remove Cups from Inven!

= Variable: Remove_Cups_From_Inve
67

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

(HMI View)
Inventory
Cups
[Total 0 Cup(s)

|Add/Remove Inventory

0 Cup(s)

Add Cups to Inventory J

Remove Cups from Inventory J

Inventory

Cups

Total

0 Cup(s)

lAdd/Remove Inventory

4| Cup(s)

[Add Cups to Inventory N

bg
Remove Cups from Inventory J

Inventory

Cups

|Total

4 Cup(s)

lAdd/Remove Inventory

1| Cup(s)

Add Cups to Inventory J

[Remove Cups from Inventory %

Inventory

Cups

Total

3 Cupl(s)

Add/Remove Inventory

1| Cup(s)

Add Cups fo Inventory J

Remove Cups from Inventory J

Explaining the Example: The user wanted to create an HMI screen that shows how many cups he
currently has in inventory. Additionally, the user wanted the ability to easily add and remove cups from his
inventory while keeping his total inventory up-to-date. After the user wrote the code, the user clicked Run
and then View HMI in the ARGEE menu bar. The user used a Display Number element to display the total
cups in his inventory. The user used an Enter Number element to create an editable field on his HMI.
Lastly, the user created two Submit Action elements which both perform some math and update the total

inventory with the new value.

ﬂ .
The Submit Action element will be talked about later in this chapter in section 9.4.3 Action.

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

68

9.2.1.4 Enter State

The user will use the Enter State element if the user wants to change program state through the HMI.

Example of Enter State:

&
&
]
it
[
=

[

-
10 Config HMI Project Set Title About

|;U
=
5
E
©
o
=
D
=

Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shortcuts {(hidden)
[£ Task-MainTask
0+ |Program Variables
0 + | Condition [Submit J
Name Type
1 |state State/Enum v 7 Destination: |Submit
2 [Submit Number v ao FeEE Expression: ()
Add Variable J
Assignment ¥ | Add Block |
[1 = TAlias Variables (hidden)| Condition | Add Block)
3+ [States [+ _Aniscreens
Name D= [HMIScreen [cook Book 4
o TOMATO_SOUP
1 |cHICKEN_souP 00+ Section [Recipes A
2 |CHIL
Add Element | _ Tile: Curently Making:
0.0.0 Sonay WUMOEH | variabie: State
ng
States Y| Add Units:
Title: Change Recipe To:
Variable: State
0041 Enter State
Start State: TOMATO_SOUP
End State: CHILI
Title: Submit
0.0.2
Variable: Submit

(HMI View)

Cook Book

Recipes
Currently
laking: CHILI
Change v
Recipe To: CHILI
Submit |
69

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

(HMI View)

Cook Book
Recipes
Currenthy
Making: Ll
Change oy, v
Recipe 0. I 5MaTo_SOUP
[CHILI
Cook Book
Recipes
Currently
Vaking: Ll
Change ' cKEN SOUP v
Recipe To:
[Submi
N
Cook Book
Recipes
hcd”".e“t_'V CHICKEN_SOUP
aking:
Change |'cpycKEN_SOUP v
Recipe To:
Submit |

Explaining the Example: The user wanted to be able to change the soup recipes from the HMI. After the
user wrote the code, the user clicked Run and then View HMI in the ARGEE menu bar. The user used the
Display State element to display the machines current state. The user used the Enter State element to
give him the ability to change between different recipes. Lastly, the user created a Submit Action element
submitted the changes to the machine.

ﬂ NOTE
The Submit Action element is explained in detail in section 9.2.1.5 Action.

70

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

9.2.1.5 Submit Action

The user will use the Submit Action element when the user wants to create a button on their HMI which
either confirms changes in editable HMI fields or acts as a start button to some other chain of events.

Example of Submit Action:

— :
F & == [P Q
Run Debua Print 10 Config Huit Project Set Title About
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hidden)
[+ Task-MainTask
0 + [Program Variables
0 + | Condition [Submit /j
Name Type)
1 |Submit Number M Destination: Submit
2 |Register_1 Number v Lo AeELICE Expression: 0
Add variable)

Destination: Register_1

‘D

Assignment .
Expression: Register 1 + 1

Assignment ¥ | Add Block |
Condition ¥ | Add Block

[1 + [Alias Variables (hidden)|

Function Block ¥ Add)

+ HMI Screens

0+ |HMIScreen [Math Problem 4
00+ Section [Sum /J
Title: Result
Display Number/ - . =
000 State/String Variable: Register_1
Units:
Title: Add 1 More
0041 Submit Action
Variable: Submit
(HMI View)

Math Problem

~ s
Sum l Sum

Math Problem

Result [o Result \1
[Add 1 Mgre Add 1 More |
s

Explaining the Example: The user created a simple HMI which increase the current value in Register_1
by one every time the Add 1 More button is pressed. After the user wrote the code, the user clicked Run
and then View HMI in the ARGEE menu bar. The user used the Display State element to display the
current value in Register_1. The user used the Submit Action element to increment the value in
Register_1.

ﬂ NOTE

The reason the user always sets the Submit Action back to “0” in the Main Task is because the
user only wants the action to happen one time. If the user did not load a “0” into the Submit Action
variable, the action would continue to happen every scan cycle.

71

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

9.3 HMI Grid Screen

The user will use HMI Grid Screen to create an HMI with custom graphics and colors. The HMI Grid
Screen consists of a single table which has a user specified number of rows and cells and elements.

|: HMT Screens
L HMI Screen v | _Add Screen)
| HMI Screen

HMI Image Group
| Comment

9.3.1 HMI Grid Screen

The HMI Grid Screen element has four arguments:
W Screen Title

m Screen Width
B Rounded Edges (True / False)
m Background Color

Example of HMI Grid Screen:

HMI Grid Help: SCREEN_PROP(Title.width_m_percent of screen.enable rounded edges.background_color)
Screen [SCREEN_PROP("Inventory",9@,false,"transparent")

=)

2

(Grid Row v |_Add Row)
Grid Row
‘ Comment

(HMI View)

Screens
—

(90% of the Screen)

Explaining the example: The user created a new HMI grid screen titled “Inventory” that stretches 90% of
the screen. The user also set his rounded edges to false and his background color to transparent.

ﬂ NOTE
ARGEE supports all colors that your web browser supports. This user can either type in the Hex
value or the X11 color name. For example: the user could type “whitesmoke” or “#F5F5F5.”

72

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

9.3.2 Grid Row

The Grid Row element has one argument:
B Background Color

Example of Grid Row:

Help: ROW PROP(backsround_color)
[ROW_PROP (" salmon™) J

| Grid Cell v | Add Section)

Grid Cell

=
=3
I+

Grid Row

(HMI View)

Screens

Explaining the example: The user added a row to his “Inventory” screen, and set the background color
to salmon.

9.3.3 Grid Cell

The Grid Cell element has two arguments:
Column Span

Border Style
0 = No border

1 = Border around every element in the cell

2 = Single border around the entire cell

Example of Grid Cell:

Help: CELL PROP(cohun_span border styvle)
0.00 + Grid Cell p
[CELL_PROP(2,1)
Help: STATIC TEXT(Text colorsize backgroumd celor)
0000 |:STATIC_TE>(T(”Column Span of 2","black”,3,"lavender")
Help: CELL_PR.OP(column_span border_stvle)
001 + Grid Cell

[CELL_PROP(1,1)

Help: STATIC TEXT(Text.colorsize backeround_color)
[STATIC_TEXT ("Column Span of 1","black”,3,"yellow"™)

73

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

(HMI View)

Screens

[Column Span of 2 HH Column Span of 1

Explaining the example: The user separated the row into two columns. The lavender colored Grid Cell
has a column span of two and the yellow colored Grid Cell has a column span of one.

ﬂ .
The Static Text element will be discussed later in this chapter in section 9.6.4 Static Text.

9.3.4 Grid Element
The Grid Element has several built-in functions. The user can access them by clicking inside the Grid
Element and pressing Ctrl-f. Additionally, the height of the column is controlled by the number of Grid
Elements in a Grid Cell.

Example of Grid Element:

Help: CELL_PROP(column_span border_style)
000 + Gnd Cell
[CELL_PROP(2,2) D)
: Help: STATIC_TEXT(Text.color.size.background_color)
0.0.00 Gn
= Grid Element [STATIC_TEXT("Grid Cell 1, Grid Element 1","black",3,"lavender"))
) - Help: STATIC_TEXT(Text.color.size background_color)
=l S [STATIC_TEXT("Grid Cell 1, Grid Element 2","black",3,"lavender"))
Help: CELL_PROP(column_span border_style)
001 + Gnd Cell ; |
[CELL_PROP(1,1) J
- Help: STATIC_TEXT(Text.color.size background_color)
S Grid Element [STATIC_TEXT("Grid Cell 2, Grid Element 1","black”,3,"yellow") [}
(HMI View)
Screens
Grid Cell 1, Grid Element 1 |
- — Grid Cell 2, Grid Element 1
Grid Cell 1, Grid Element 2 |‘“ ”
74

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Explaining the example: The user separated the row into two columns. The lavender colored Grid Cell
has a column span of two and the yellow colored Grid Cell has a column span of one. The height of the
Grid Row automatically expanded to accommodate the second element in the lavender colored Grid Cell.

ﬂ NOTE
The Static Text element will be discussed later in this chapter in section 9.3.4.4 Static Text.

9.3.4.1 Display Value

The Display Value element has six arguments:
Title

Variable Name
Units
Font Color

Font Size

Background Color

Example of Display Value:

0 + [Program Variables

Name Type
1 Thermometer MNumber v

Help: DISPLAY _VALUE(Title var.umits_strimg. color.size background_color)
|:DISP LAY_VALUE("Temperature"”,Thermometer,”C®","black”,3, "transparent™)

0.0.0.0 Gnid Element

(HMI View)

Temperature || 42 °C

Explaining the example: The user wants to display the value of Thermometer in degrees Celsius.

9.3.4.2 Enter Value

The Enter Value element has six arguments:
Title

Variable Name
Units
Font Color

Font Size

Background Color

75

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Example of Enter Value:

0 + |Program Variables
Name | Type
1.0 INIT : 0
1 |Total Number v
2 Inventory Mumber v
4 |Submit MNumber v
Help: DISPLAY VALUE(Title var,umits_strmg. celor. size background _color)
0.0.0.0 Grid Element '
|[DISPLAY VALUE("Total Inventory",Total,"units","black”,3,"transparent")
Help: ENTER, VALUE(Title. varmmts_strmg,colorsize background_coler)
0.0.0 Grid Element '
|[ENTER_VALUE("Inventory Added”, Inventory,"unit”,"black”,3,"transparent™)
Help: BUTTON(Title var.celer.size.background_color)
S nd |:BUTTON(".0.dd to Inventory”,Submit,"black”,3,"transparent™)

(HMI View)

Total Inventory ” 0 vnits

Inventory Added 42 | unit

[Add to InVETQtDry

Total Inventory ” 42 vnats

Inventory Added 42 | unat

Add to Inventory J

Explaining the example: The user wants to keep track of his inventory. As units come in, he types in the
quantity and clicks Add to Inventory. The total inventory increments on the input.

ﬂ NOTE

The Button element will be discussed later in this chapter in section 9.3.4.3 Button.

76

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

9.3.4.3 Button

The Button element has five arguments:

Title

Variable Name
Color

Size

Background Color

Example of Button:

0 + [Program Variables
Name | Type
1.0 INIT: O
1 |Total Number v
2 Submit Number v
Help: DISPLAY _VALUE(Title var muts_strmg colorsize. background_coler)
0.0.0.0 Grid Element

I:DISP LAY _VALUE("Tetal"”,Total,"unit","black”,3,"transparent”)

Grid Element

Help: BUTTON(Title.var.color. size background_coler)

I:BUTTDN("Add 1",Tetal,"black”,3,"transparent™)

(HMI View)

Total || 0 vt

| Adgf

Total || 1 vunit

Add 1 |

Explaining the example: The user added a button to increment the total unit count (increment code not
displayed). When the button is pressed, the total increments by one.

9.3.4.4 Static Text

The Static Text element has four arguments:

Text
Font Color
Font Size

Background Color

Example of Static Text:

0.0.0.0 Grid Element

Help: STATIC_TEXT(Text.celer.size background_coler)

|:STATIC_TEXT{"Cell 8 Robot Status”,"black™,3,"transparent™)

77

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

(HMI View)

Cell § Robot Status

Explaining the example: The user wants to label certain information in the HMI “Cell 8 Robot Status.’

9.3.4.5 Screen List

The developer can use the Screen List element to have more control over the HMI Screens. They can
move the location of where it is displayed, alter the background color, and change the text size.
m Title

B Title Font Size
B Title Color

Example of Screen List:

Help: ROW_PRCP(backaground_color)
13 = Grid Row
- = [RoW_PROP("salmon™) P
Grid Cell
130 * (hiciden) CELL_PROP{1.1)
Help: CELL_PROP(column_span,border_style)
131 Grid Cell
= [cELL_PrOP(2,8) P
Help: SCREEMN_LIST(Title fitle_font_size title_calor)
1310
[SCREEN_LIST("Screen Links","1.","black") P
132 . Help: CELL_PROP(column_span,border_style)
32 = rid Cel
= [cELL_PROP(1,1) P
Help: STATIC_TEXT(Text color,size,background_coloralignment)
— [STATIC_TEXT('Sample Text","black","1.5","transparent”,"center") 4]
Grid Cell
133 + (hidden) CELL_PROP(1.1)

(HMI View without the Screen List element)

Screens

”h_/,lz.m Screeﬂ”System View”System Wammgg”

Sample Text

(HMI View with the Screen List element)

Main Sereen]system View|systen Wanivgs

78

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Help: SCREEN_LIST(Title.title_font size title_celor)
|:SCREEN_LIST("Screens”,5,"black™)

(HMI View without the Screen List element)

Screens

||Main Scre en”Sy stem \-’iew”System Wamings”

Total Inventory ||0 units

Inventory Added 0| unit

Add to Inventory |

(HMI View with the Screen List element)

Screens

Main Screen|Svystem View|System Warnings

Total Inventory || 0 units

Inventory Added 0/ unit

Add to Inventory J

Explaining the Example: The user has three HMI screens: “Main Screen,” “System View,” and “System

Warnings.” By using the Screen List element, the user is able to move his screen list anywhere on his
HMI, alter the text size, and change the background color.

ﬂ NOTE

The screen list can be placed anywhere on the HMI by modifying the Grid Row and Grid Cell
properties.

9.3.4.6 Static Graphics

The Static Graphics element has three arguments:
B Image File Variable

m Background Color

B Zoom Percentage

Example of Static Graphics:

Help: STATIC_GFAPHICS(image file varisble background_color default zoom)

|:STATIC_GRAPHICS("Turck Logeo","transparent”,1@@)

(HMI View)

79

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Explaining the example: The user imported a static image to display on the HMI.

ﬂ NOTE
Importing images will be discussed later in this chapter in section 9.3 HMI Screen.

9.3.4.7 Multi-State Display String

The user will use the Multi-State Display String element when the users wants to show different strings
when a change of state occurs. The Multi-State Display String element has at least 11 arguments, more
maybe used depending on how many strings the developer is using.

Title

Variable

Font Size

Title Color
Background Color
Value 1

Image 1
Background 1
Value 2

Image 2

Background 2

Example of Multi-State Display String:

0 + [Program Variables
Name [Type 3 + | States
1.0 [INIT : System_ERROR Name
1 |System_State Mumber v 0 [System OK
2 |Submit MNumber v 1 System_ERROR

80

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Help: MULTI_STATE DISPLAY STRING(Title var size title colortitle backaround color, valuel colorl backgroundl, ...)

=
=
=
1=

@, "System is Operational”,"black","chartreuse”,
|11, "System Error”, "black”, "red")

Grid Bl MULTI_STATE_DISPLAY_STRING("System Status",System_State,3,"black”,"transparent”, ‘

Help: BUTTON(Title, var.color.size background_celer)

=]
=]
=

Grid Element

I:BUTTDN("Reset"”,Submit, "black™,3,"transparent”)

(HMI VIEW)

Syvren St |

[Reseng

System Status ||S}rstem 15 Operational

Reset J

Explaining the Example: The user wrote some code to monitor the System_State (not displayed). When
the System_State changes from System_OK to System_ERROR, ARGEE will display the user’s specified

strings.

9.3.4.8 Multi-State Display Graphics

The user will use the Multi-State Display Graphics element when the users wants to show different
graphics when a change of state occurs. The Multi-State Display Graphics element has at least 12

arguments, maybe more depending on how many images the user needs.
Title

Variable

Font Size

Title Color

Background Color
Image Zoom Percentage
Value 1

Image 1

Background 1

Value 2

Image 2

Background 2

Example of Multi-State Display Graphics:

0 = [Program Variables 3 = |[States

Name Type Name
1 Current_Motor_State State/Enum ¥ o Motor_OFF
2 Submit Number v 1 Motor_ON

81

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Help: MULTI_STATE_DISPLAY GFAPHICS(Title.vartitle sizetitle_celortitle background color.image zoem level valuel.imagel backgroundl...)

0.0.0.0 Grid Element 'I'~1ULTI_STATE_DISPLAY_GRAPHICS("I"10tor‘ Status",Current_Motor_State,3,"black”,"transparent™, 3@,
|@, "Red Button”,"transparent”,1,"Green Button","transparent™)

Help: BUTTON(Title.var.coler.size. background_celer)
|:BUTTON["S ubmit",Submit, "black™, 3, "transparent™)

0.0.01 Grid Element

(HMI View)

Motor Status

[On/Off [\

Motor Status

On / Off |

Explaining the Example: The user wrote some On / Off code to control the Current_Motor_State (not
displayed).The user also imported red and green power images to represent motor state. When the user
clicks the On / Off button, it changes the Current_Motor_State which then changes the image displayed in
the HMI.

ﬂ NOTE
Importing images is discussed later in this chapter in section 9.3 HMI Screen.

9.3.4.9 Dropdown List

Dropdown List is used to give the user a list of options to change a variable. The Dropdown List element
has at least 9 arguments, more maybe used depending on how many options the developer needs:

Title

Var

Size

Title Color
Background Color
Value 1

Text1

Value 2

Text 2

82

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Example of Multi-State Display Graphics:

0 = [Program Variables
Name Type
1 Total Number v
2 Inventory Mumber v
3 Submit Mumber v

Help: DISPLAY _VALUE(Title,var,units_string,color,size, background_color)
0.0.1.0 Grid Element

|:DISPLA‘|'_VALUE ("Total Inventory”,Total,"unit","black™,”1.5","transparent™) A'

Help: DROPDOWM_LIST(Title, var,size title_color background_color,value1 text1 value2 text2.....)
0.0.1.1 Grid Element

|:DRDPDDI.\JN_LIST(", Inventory,"1.5","black", "transparent”,-2,"Subtract P

Help: BUTTON(Title,var color,size, background_caolor)
0.01.2 Grid Element

[BUTTON("Change Inventory Total”,Submit,"black”,”1.5","transparent”) y!

Total Inventory |7unit
Add One '

Change Inventory Total |

Explaining the Example: The developer wrote some code and created a simple Inventory HMI. The user
can add or subtract one or two units from the Total Inventory using the dropdown list.

9.3.4.10 Display Value with Health

The Display Value with Health element has six arguments:
Title

Title color
Font Size
Variable Name
Units

Health Variable Name

o 0=Green
o 1=Yellow
o 2=Red

Example of Display Value with Health:

0 + [Program Variables
Name [Type

10 |INIT:4

Total | Number v
20 |INT:0
2 |Health Variable | Number v

Help: DISFLAY_VALUE WITH_HEAITH(Title.title_color.size. varumits_strmg health var)

2000 (Gnd [DISPLAY_VALUE_WITH_HEALTH("Inventory”,"black",5,Total,"Cups”,Health Variable) J

83

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

(HMI View)

Inventory (|4 Cups

Inventory |2 Cups

Explaining the Example: The user wrote some code and created a simple Inventory HMI. When there
are 4 cups in the inventory, the HMI turns green. When there are only 2 cups left in the inventory the HMI
turns yellow.

9.3.4.11 Link

The Link element allows the user to create buttons that link different HMI screens. The difference between
Link and Screen List is that the Link buttons can change color, change text, or be hidden completely.

The Link element has four arguments:
B Title Variable (String)

B Value Variable (Number, 0 or 1)
m Background Color Variable (String)
[]

Size

Example of Link:

Help: LINK(Title_var,value_var,background_color_var,size)
[LInk (Fridge_Title Variable,Fridge Link Variable,F]

ridge Color_ Variable,3) P

0.0.00 Grid Element

Help: LINK(Title_var,value_varbackground_color_var,size)

0.2.1.0 Grid Element LINK{Stor‘e_TitlE_Variable,StorE_Link_Uar‘iableJStoj
re_Color_Variable,3)
0 + |Program Variables
Name [Type
of Array Elements: 32 (Clear field to disable array)
1 |ACTIVE_HMI_SCREEN | String v
of Array Elements: 32 (Clear field to disable array)
Fridge Title Variable | string v
of Array Elements: 32 (Clear field to disable array)
3 Fridge_Color_Variable String v
4 Fridge_Link_Variable Number v
of Array Elements: 32 (Clear field to disable array)
] Store_Title_Variable String v
of Array Elements: 32 (Clear field to disable array)
& | Store_Color_Variable String v
1 Store_Link_Variable Number v
(HMI View)

“Fridge” HMI Screen:

7248 hotdogs in fridge

84 3624 hamburgers in fridge

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Eating food...

2 hotdogs in fridge

Go to Stpre
1 hamburgers mn fridge é)

Get low enough, and the Store screen link appears.
Click the link to go to that screen.

“Store” HMI Screen:

2000000000 hotdogs in store

Buying food...
uying ood 2000000000 hamburgers in store

Buy More Food |

h h . link 1999986000 hotdogs in store
Buy enOl:Ig ! anc.i the Fndge screen link appears. 1999993000 hamburgers i store
Click the link to go to that screen.

Buy More Food |

Explaining the example: The user wrote code that decreases the number of hotdogs and hamburgers in
their fridge over time. If the count gets too low, the yellow link for the “Store” HMI screen is made visible
so more can be bought. After enough food is bought at the store, the green link for the “Fridge” HMI
screen appears so he can go back.

85

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

9.4 HMI Image Group

The user will use the HMI Image Group if the user want to upload an image to be used in their HMI
design. This can be used to present company logos or certain types of dynamic graphics such as tank
levels. Each individual image should be kept below 20kb file size to save space on the 10 block.

Example of creating an HMI Image Group:

o . | HMI Image
== | Group
L HMI Image ¥ | Add Image)
Comment l
o . | HMIImage
== | Group

0.0 HMI Image Choose Files | Mo file chosen

!

€ Open ==
\JQ =) » Libraries » Pictures » 3
Organize v New folder =- A @
' Favorites Pictures library e -
B Desktop Includes: 2 locations
& Downloads
. Recent Places
i Libraries T
[Documents . omO
o Music Sample Pictures Footer with Header with logo Turck Logo
i Pictures Address
B Videos
1% Computer
&, Local Disk ()
G NID (\\usms-dati ~
s

+ HMT Sereens

_ | HMI Image
— | Group

=]

VarName:Turck Logo

S TUIRCEK

=]
=

Explaining the Example: The user added an image of the Turck logo to their ARGEE project. The user
will now create an HMI Grid Screen and place the logo in their HMI.

ﬂ o
To access the list of the HMI variable names, the user can press Ctrl-I from anywhere inside the
HMI screens section.

86

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

9.5 HMI Formatting Tips

9.5.1 Cell Spacing in a HMI

Spacing is important to make a HMI look good. A HMI cell will naturally take up all of the space allocated
to it in a row. So adding empty cells with different cell span sizes can make cells a more reasonable size.

The following code demonstrates this.

This Inventory table’s width is the whole screen because it is the only cell in its row, this leaves a lot of

empty space.
Help: ROW_PROP(background_color)
11 + Grid Row . \
|[ROW_PROP("transparent™) 4
Help: CELL_PROP{column_span,border_style)
A0 = Grid Cell ‘ \
[cELL_PROP(1,1) 4

1.0.0 Grid Element

Help: DISPLAY _WALUE(Title var units_string color,size background_color)

|:DISPLA‘|‘_VALIJE ("Total Inventory",Total," unit”,"black","1

.5","transparent”)|

1.01 Grid Element

Help: ENTER_VALUE(Title var, units_string,color,size,background_color)

[ENTER_VALUE("Imrentor‘y Added”, Inventory, "

102 Grid Element

Help: BUTTOM(Title,var,color,size, background_caolor)

|:BUTTON{"Submit ",Submit, "black","1.5","transparent")

A

Total Inventory |Ounit

Inventory Added 0 unit

Submit |

Now because the cell with the Inventory table in it has a column span of 1 and there are 3 columns in the

row the width will be 1/3 of the screen.

Help: ROW_PROP(background_color)
10 = Grid Row ' "
|\R0‘N_PROP("transparent") /,J
— Grid Cell
00 + (hidden) CELL_PROP(1.1)
Help: CELL_PROP(column_span,border_style)
101 *+ Grid Cell ,)
[cELL_PROP(1,1) y!
Help: DISFLAY _\VALUE(Title var,units_string,color,size, background_color)
1.0.1.0 Grid Element 0 - ~
[DISPLAY_VALUE("Total Inventory",Total,” unit","black”,"1.5","transparent”),|
Help: ENTER_VALUE(Title,var,units_string,color,size background_celor)
1.01.1 Grid Element '
|[ENTER_VALUE("Inventory Added”,Inventory,” A
Help: BUTTCN(Title,var,color.size, background_colar)
1012 Grid Element i - - y
|\BUTTON{"Subm1‘t ",Submit, "black”,"1.5","transparent™) /,J
Grid Element ¥ | Add Element)
Grid Cell
2 £ (hidden) CELL_PROP(1.1)

Total Inventory |0unit

Inventory Added 0 unit |

Submit |

*The spacer cells only have borders so they are easier to view for this documentation, the boarder would usually be set to 0 no border.

87

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

9.5.2 Row Spacing in a HMI

HMI Grid Elements within a cell will not naturally align themselves with another cells elements in the same
row if they are different sizes. Each cell will vertically center its elements to the center of the largest cell in
the row. So in some cases it is easier for the developer to align elements in separate rows.

The code bellow shows that the Enter Value element is larger than the static text labels they have next to
them. This makes the labels not clearly match the element they are describing.

Help: ROW_PROP(background_color)

* Grid Row

[RO‘N_PROP("tr‘anspar‘ent")

4

Grid Cell

|i:

Help: CELL_PROP(column_span,border_style)

[cELL_ProP(1,0)

4

.00

Help: STATIC_TEXT(Text color,size,background_color,alignment)

Grid Element fi " "o "wom "om "o "
[STATIC_TEXT("Enter Value 1:","black","1.5","transparent”,"center")

Y

Help: STATIC_TEXT(Texi color,size, background_color,alignment)

Grid Element ' = 5 o Do o, = = o =
|\STATI[_TEXT(Enter Value 2:","black”,"1.5","transparent”,"center”)

1.1.0.2

Help: STATIC_TEXT(Text color,size background_color,alignment)

Grid Element (= 5o —— —_ =
|\STATIC_TEXT(Enter Value 2:","black","1.5","transparent”,"center"”)

4

* Grid Cell

Help: CELL_PROP(column_span,border_style)

[cELL_ProP(1,0)

4

Help: ENTER_VALUE(Title, var,units_string,color,size, background_color)

Grid Element i nn waow " om " om "
|\ENTER_\.I'ALUE(,Test,"","black","1.5","transparent")

Y

Help: ENTER_VALUE(Title, var,units_string,color size, background_color)

Grid Element (p— — =
|\ENTER_\.I'ALUE(,Test,”","black™,"1.5", "transparent™)

Help: ENTER_VALUE(Title, var units_string, color size background_color)

Grid Element (o @ D o o =
|\ENTER_\J‘ALUE(,Test,"","black™,"1.5","transparent™)

4

Grid Cell

|i\.a

Help: CELL_PROP(column_span,border_style)

[cELL_ProP(8,0)

4

Enter Value 1:
Enter Value 2: 0
Enter Value 3:

88

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

With the static text and enter value elements separated into individual rows they are now aligned.

Help: ROW_PROP(background_color)
12 = Grid Row . ~
|rOW_PROP("transparent”) Y
Help: CELL_PROP{column_span,border_style)
120 = Grid Cell ‘ y
[cELL_ProP(1,@) |
Help: STATIC_TEXT(Text,color,size, background_color,alignment)
200 Gm El t I " "o " om w om "o ")|
[STATIC_TEXT("Enter Value 1:","black”,"1.5","transparent”,"center”) 4
Help: CELL_PROP{column_span, border_style)
121 = Grid Cell ‘ ,
[cELL_PRoP(1,@) !
Help: ENTER_VALUE(Title var.units_string,color,size, background_color)
1.2.1.0 Grid Element (g
|[ENTER_VALUE("",Test,"", "black”,"1.5", "transparent”) 4
Grid Cell
22 = (hidden) CELL_PROP(E.0)
Help: ROW_PROP(background_color)
13 = Grid Row e ~
|rOW_PROP("transparent”) Y
Help: CELL_PROP{column_span,border_style)
30+ Grid Cell ‘ y
|[cELL_PROP(1,8) |
Help: STATIC_TEXT(Text,color,size, background_color,alignment)
3.00 Grid Element (g
[STATIC_TEXT("Enter Value 2:","black”,"1.5","transparent”,"center”) 4
Help: CELL_PROP(column_span,border_style)
131 = Grid Cell ‘ y
[cELL_PROP(1,8) y!
Help: ENTER_VALUE(Title,var,units_string,color,size,background_color)
3.1.0 Grid Element (g
[ENTER_VALUE("",Test,"", "black”,"1.5", "transparent™) y
P Grid Cell
32 + (hidden) CELL_PROP(8,0)
Help: ROW_PROP(background_color)
14 = Grid Row y S
[ROW_PROP("transparent™) 4
Help: CELL_PROP{column_span,border_style)
0=+ Grid Cell ‘ y
[cELL_PROP(1,@) 4
Help: STATIC_TEXT(Text.color,size, background_color,alignment)
1.4.0.0 Grid Element (g
[STATIC_TEXT("Enter Value 3:","black"”,"1.5","transparent”,"center") 4
Help: CELL_PROP(column_span,border_style)
141 = Grid Cell ' ~
[cELL_PROP(1,8) y!
Help: ENTER_VALUE(Title, var,units_string,color,size, background_color)
1.4.1.0 Grid Element (g
[ENTER_VALUE("",Test,"", "black”,"1.5", "transparent”) |
Grid Cell
42 + (hidden) CELL_PROP(8,0)

Enter Value 1: 0
Enter Value 2: 0

Enter Value 3: 0

89

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

10 PLC Connectivity

10.1 Communicating with EtherNet/IP Master — RSLogix5000 / Studio5000

ARGEE blocks have the ability to communicate with an EtherNet/IP Master. The E/IP Master can
establish communication via connection points 101 & 110 when running ARGEE with up to 240 Words of
input and 240 words of output data.

Example of Communicating with an EtherNet/IP Master:

(ARGEE Setup)

10: I0 o I0: I0_ARGEE_TO _PLC -
slote (TBEN-51-8DXP) -» {Number)
slotl (Basic) - <- Wordl {Number)
5lot2 (Diagnostic) -2 <- lWord2 {Number)
Slot3 (Input Latch Cha-7) -¥ ¢~ Word3 {Number)
Slota (Ext. Func. Digital) - - Wardd (Number)
Slots (Ext. Func. Digital) -> ¢~ Words (Number)
slote (Ext. Func. Digital) - - Words (Number)
Slot? (Ext. Func. Digital) -»

Slot8 (Ext. Func. Digital) -¥ ¢ ::orj; {:UMEEFJ
slot9 (Ext. Func. Digital) -> €0 wWer (Number)
slotle (Ext. Func. Digital) -» <- Words (Number)
slotll (Ext. Func. Digital) -» <= Wordl? (Number)
slotl2 (Module status) - <- Wordll (Humber)
ARGEE_TO PLC () _3 £- Wordl2 {Number)
PLC_TO_ARGEE () - €- Wordl3 {Number)
¢ | Condition P
: Destination: |0 ARGEE TO PLC WordD
0.0 Assignment
Expression: 1
(RSLogix 5000 Setup)
7| Module Properties Report: Local (ETHERNET-MODULE 1.1)
General | Connection | Module Info
Type: ETHERMET-MODULE Generic Ethemet Module
Yendor: Allen-Bradley
Parent: Local : N,
N . ohnection Parameters
AAme TBEN_S1_8DXP e
Description: i Instance: Size:
Input: o 10 = [16hit)
C Oupa 110 B 2] nebig
Comm Format: | Data - INT Configuatior: | 106 1 =] abi
Address / Host Name
@ |P Address: 192 0188 . 1 . 87 Status Input
() Host N.ame: atus Outpul
Status: Offfine [ok | [Cancel Apply
90

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Explaining the Example so far: The user wants to pass data from an ARGEE block to the E/IP master.
The user’s code will write the value “1” into word 0 bit O of the ARGEE_TO_PLC register. The user then
created a generic Ethernet device in RSLogix 5000 and set the connection points to be 101 & 110.

+ TBEN_51_BDXP.CData {---1 =
— TBEN_S1_80XPi IS & 1 o] > ya
2/ TREN 51 B0XF| Data {) Edit Code HMI Halt Step Confinue Modify Vars
TS S0P Datal] == '1 Loadable code size 1172 bytes(out of 43008 bytes) Project size: 2218 bytes (out of 262144 bytes)
I TEEN_S51_8DxP:|.Data[0].0 1 Ri .
untime Status
TEEN_51_0P | Datal0] ARGEF Program
TBEN_S1_8DxP:|.Datal0].2 4| TRACE
TBEN_51_8D%P|. Datal0]. 2 0 [§ PROG_CYCLE TIME :2 .
TBEN_S1_80XP!. Datal0] o | |BLC_CONMECTED: 1 [l= Task-mainTask
-MainTask
TBEN_S1_8DXP:l. Data0] 5 0 ‘f‘ - Lw:l“l'oﬁ’s]m 0+ |Condiion True
TBEN_S1_8DxP:|.Data[0].6 [i] | Local 10 Slotl - Input
TBEN_S1_8DP:|. Datal0].7 g)| Local I0: Slotl - Output Destination: I0_ARGEE_TO_PLC_Waord0
TBEN_S1_8DXF.L. Datal0] 8] | Local10: Slot1 - Diagnostics a0 T ——
TEEN_S51_8DxF:|.Datal0].9 [1] +A .| Local10: Slot2 - Input
TBEN_S1_80F.I. Datal0]. 10 o . Local10: Slot3 - Input
Local IO: Slot3 - Qutput
TBEN_S1_8DxP:|.Data(0].11 [1]
= g2l Local10: Slotd - Input
TBEN_S1_BDXP..Diata[0]. 12 o Local 10+ Slot4 - Output
TBEN_S1_8DxF:|.Data(0].13 a A Local 10: Slot7 - Input
TBENW_51_8DxP:|.Data[0]. 14 [1] . $Local IO: SlotT - Ourput
TBEN_51_8D%F: Data[0].15 0 ocal 10: Slot7 - Diagnostics
CUTAFR P4 ARGR R e r - ocal TO: Slotll - Tnput
cal 10: Slotll - Queput
cal 10: Slotll - Diagnostics
.. LBeal 10: Slot12 - Input
i _TO_ARGEE
= C
[0]: 0001
L TBENS1_E0vP1 Do . —
+ atel o .
— TBEN_S1 gDX;"D { 1 Eﬁ I]D W lD /
= E Edit Code HMl Halt Step Continue Modify Vars
= TBEN_S1_8DXF:0.Data {---1 Loadable code size 1172 bytes(out of 43008 bytes) Project size: 2218 bytes (out of 262144 bytes)
—-TBEN_S1 EDXF’.U.DaﬁLU] 1
TBEN_51_8DXP:0.Datal0].0 \: Runtime Status
TEEN_51_80%F 0 Datall] 1 Yo ARGEE Program
TBEN_S51_8DxP:0.Data[0].2 b 4 TRACE
PROG_CYCLE_TIME :2
TEEM_51_8DxP:0.Data[0]. 3 \ F_-_-_LIL CoAMECED . 1 = Task - MainTask
TBEN_S1_8DxP:0.Data[0]. 4 —-—'\i o Tack .
= L =MainTask .
TBEN_51_8DxP:0.Data[0].5 0 | Local 10: Slotd 0+ |[Condition True
TBEN_S1_BDXP.0.0ata[0].5 o |\ LocalI0: Slotl - Tnput
TBEN_S51_8DXP:0.Data[0].7 0 1! Local 10: Slotl - Output . Destination: I0_ARGEE_TO_PLC_WordD
TBEN_S1_8D%P-0.Data[l] 8 o 1| Local I0: Slot] - Diaguostics 00 N e sion: 1
TBEN_S1_80xF.0.0ata(01 9 o | [\ |2 Local1O: Slot2 - Input
1\ Local 10: Slot3 - Input
[EIERE0X 0 Datal0] o : Local I0: Slot3 - Output
TBEN_51_80xP: 0. Data[l] Ll . Local I0: Slot4 - Input
TOEM €1 OmvD.A ot -

+

. Local I0: Slot4 - Output

. Local IO: 5lotT - Input

Local I0: Slot7 - Qutput

Local I0: 5lotT - Diagnostics

Local I0: Slotll - Input

A Local I0: Slotll - Output

ocal I0: Slotll - Diagnostics
¢alI0: Slotl2 - Input

[+ B #EHEEEH

0) (0x0001

Explaining the example: The above image is showing that the data has been successfully passed back
and forth between ARGEE and the RSLogix 5000.

NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the 10 Variable

Format (discussed in 11.4.2 |10 Variable Formats). For example, the user wants to force word 0 bit
5 true, the destination variable would be |IO_ARGEE_TO_PLC_Word0.5

91

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

10.2 Communicating with a PROFINET Master — SIMATIC STEP 7

ARGEE blocks have the ability to communicate with a PROFINET Master. The PROFINET Master can
establish communication via an ARGEE GSD file.

Example of Communicating with a PROFINET Master:

(ARGEE Setup)

10: 10 10: I0_ARGEE_TO_PLC
Slote (TBEN-S1-8DXP) - (Number)
5lotl (Basic) - <- Wordl {Number)
Slot2 (Diagnostic) - <- Word2 (Number)
Slot3 (Input Latch Cha-7) -» <- Word3 (Number)
slot4 (Ext. Func. Digital) - - Wordd (Number)
slats (Ext. Func. Digital) -» - - ords (Number)
Sloté (Ext. Func. Digital) - ‘- Wordé (Number)
slot? (Ext. Func. Digital) - - Word? (Number)
Slot8 (Ext. Func. Digital) ->

sloto (Ext. Func. Digital) -» <- Words (Number)
slotl® (Ext. Func. Digital) -» <= Words (Number)
slot1l (Ext. Func. Digital) -» <- Wordlg (Number)
Slotl2 (Module status) -> <- Wordll (Humber)
ARGEE TO PLC () -3 <- Wordl2 (Mumber)
PLC_TO_ARGEE () S <- Wordl3 (Number)

=

Condrtion [True

Destination: |0 _ARGEE_TO_PLC_Word(

Expression: 2

[
[}

LA Aszsignment

(SIMATIC STEP 7 Setup)

Manage general station description files

Source path: | E:ARGEE Demo | =

Content of imported path

D File Version Language Status
D GSDMLV2 3-ARGEE-201507 31-100000.xm| V23 Mot yet installed
[<] i | 3]
Delete | | Install | f Cancel 1
92

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

g% Network 1§ Connections | t [~ & BH Qs

PLC_1 turck-argee-de... ("]
cror2ic Generic ARGEE.. m
PLC 1

fans PLC_1.PROFINET I0-Syste._. -‘-g

Device overview

¥ .. Module Rack Slot | address | Q address | Type

> argee o o ARGEE FM Device
P PNIO o 0x1 turck-argee-device
IN & WORD_1 o 1 68...83 IN & WORD

OUT8 WORD_1 o 2 68..83 QUT8 WORD

Explaining the Setup: The user wants to pass data from an ARGEE block to the PROFINET master. The
user’s code will write the value “1” into word 0 bit O of the ARGEE_TO_PLC register. The user then
defines the “l address” and “Q address” from the Step 7 Device overview screen.

TWIRCE
4 Il el > A
Edit Code Hull Halt Step Continue Modify Vars

o _____ loadable code size 1172 bytes(out of 43008 bytes) Project size: 2176 bytes (out of 262144 bytes)
| @ || Local 0: Ext_Func_ Digiral_$ - Output ARGEE Program
| @ [Local I0: Ext_Func_ Digital 8 - Dingnostics
)\ Local I0: Module_status - Input
l P RGEE [Task - MainTask

]: 0x0000 0 + | Condition True

[2]: 0x0000

[31: 0x0000 S .

W 00000 0o AT E:s:::::z:: [IO_ARGEE_TO_PLC_JVnrdD

[0x0000 P :

[6]: 0x0000

[7: 0x0000

[8]: 0x0000

F & 7|l A A D[N

i Name Address Display format Monitor value Modify value F Comment
1 %QWEE Hex 16#0003 16#0003 M \
2 elW68 Hex
3 <Add news

TURCIK
Il M > 7
Hwmi Halt Step Continue Modify Vars

8, Ourput
§ - Dingnostics

ARGEE Program

), Local 10: Ext__Func_]
.1 Local 10: Module_statyp?

|+ Task- MainTask

[l (Gl 0 + | Condiion True
= Ux0000

e Destination: I0_ARGEE_TO_PLC_Wordd

[B]: 0x0000 ao fesmT Ees ina !on: . _TO_PLC_War

[41: 0=0000 xpression: 1

Explaining the example: The above image is showing that the data has been successfully passed back
and forth between ARGEE and the SIMATIC STEP 7 engineering software.

ﬂ NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the 10 Variable
Format (discussed in 11.4.2 |10 Variable Formats). For example, the user wants to force word 0 bit
5 true, the destination variable would be I0_ARGEE_TO_PLC_Word0.5

93

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

10.3 Communicating with a Modbus TCP/IP Master — Crimson 3

ARGEE blocks have the ability to communicate with a Modbus TCP/IP Master. The Modbus Master can
establish communication via registers 0x4000 (register 16384 in decimal) and 0x4400 (register 17408 in
decimal). 0x4000 is a read-only register, while 0x4400 is a read/write register.

ﬂ NOTE

Some Modbus Masters automatically increment the register value by one. For example, register
16384 might be 16385. If the user is having connection issues, the user should try and increment
the register value by one.

Example of Communicating with a Modbus TCP/IP Master:

(ARGEE Setup)
I0: IO I0: I0_ARGEE_TO _PLC
slote (TBEN-51-8DXP) -> (Number)
5lotl (Basic) e <- Wordl (Number)
5lot2 (Diagnostic) -> - Ward2 (Number)
Slot3 {Input Latch Ch@-7) - - Word3 (Number)
Slot4 (Ext. Func. Digital) -> ‘- Worda (Number)
slots (Ext. Func. Digital) ->
sloté (Ext. Func. Digital) -» ‘ ‘ ::Drjz {:uml;er':l
slot? (Ext. Func. Digital) -» < o'ﬁd (“mher:'
- (Ext. Func. Digital) -» €= Word? (Number)
51lot9 (Ext. Func. Digital) -» < Words (Number)
slotle (Ext. Func. Digital) -» <= Words (Number)
slotll (Ext. Func. Digital) -» <- Wordl® (Humber)
slot1z (Module status) -> <- Wordll (Number)
ARGEE_TO_PLC () Y <- Wordl2 (Number)
PLC_TO_ARGEE () - <- Wordl3 (Number)
0 | Condition [true J
_ Destination: [O_ARGEE_TO_PLC_Word0
00 Assigrment
Expression: 1
(Crimson 3 Setup)
Communications - Network - Protocol 1 - TBEN_S1_8DXP Device 1 @ Q
el
Device Settings

Enable Device: | Yes

Device Identification

Primary IP Address: 192.168.1.87

II |

Fallback IP Address: | 0.0.0.0

3

TCP Port: 502

4

Unit Number:

:

Protocol Options

I Ping Holding Register: |-G = | I
lgnore Read Exceptions: |No £
Link Type: Use Dedicated Socket ~
ICWIP Ping: Enable ~
94

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ﬂ NOTE
If using a Red Lion HMI, set the Ping Holding Register to zero.

T+ ARGEET 0 O enm 10
R - S | Select Address for Modbus TCP/IP Master X
File Edit View Go Link Help - Data Item -~ Element
eol 7 [%Hl JI%%@.I%@ <Mone> Mo Selection 4 |16335
— 4 Holding Registers |
rigatis D Analog Inputs
P Digital Coil
?
a2 New - | I e i Bigital Inputs
Data Tag T Holding Registers [32-hit) - Details
: el ENb Type: ‘Word
| Ed Read Write |
Minimum: 400001
Maximum: 465535
o Radix: Decimal
| [Data Iyoe
v.ord a5 Word
‘Word aFbang
‘Word as Real
| oK | Cancel
Read Mode: | Fntire Arrav — I 1T
Select Address for Madbus TCP/IP Master X
- Data [tem
<Mone> Mo Selection
4 Holding Registers
3 Analog Inputs
0 Diaital Coils

ﬂ NOTE
Red Lion Modbus master register addressing = Original address +1. If the original address
0x400(hex) = 16384 the Red Lion address would be (16384 + 1) 16385.

TWUIRCK
il 2 1>
Edit Code Hil Halt Step Continue Modify Vars

Loadable code size 1172 bytes(ou

of 43008 bytes) Project size: 2218 bytes (out of 262144 bytes)

Runtime Status ARGEE Program
J! TRACE
PROG_CYCLE_TIME:2
PLC_CONNECTED: 1
“MainTask

! Local 10: Slot) 2
Local 10: Slot] - Input

+ Task - MainTask

I+

Condition True

~ . Local 10: Slot] - Qutput 00 e Destination: |O_ARGEE_TO_PLC_Word0
" Local 10: Slot] - Diagnostics - Expression: 1
. Local I0: Slot2 - Input
Local 10: Slot3 - Input o 0; Slotl2 _Inp
| Local 10: Slot3 - Output

[C3ES e e

! Local 10: Slot4 - Input

[0]: Ox0002
| Local 10: Slat4 - Output I1: 0x0000
Local 10: Slot7 - Input I2]: 0x0000
S —— . Local 10: $lot7 - Qurput 3] 0x0000 El QARG
Local 10: SlotT - Diagnostics [1- 00000 g
. Local 10: Slotll - Input U Ux000
Local 10: Slotll - Outpul []: 0x0000
. Local I0: Slotll - Diagpostics [21: 0x0000
. Local 10: Slot12 [31: 0x0000
[4]: 0x0000

Explaining the example: The above image is showing that the data has been successfully passed back
and forth between ARGEE and Crimson 3.

ﬂ NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the 10 Variable
Format (discussed in 11.4.2 10 Variable Formats). For example, if the user wants to force word O
bit 5 true, the destination variable would be IO_ARGEE_TO_PLC_Word0.5.

95

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

10.4 Communicating with a Turck PLC or TX500 Series HMI — CODESYS 3
10.4.1 EtherNet IP

ARGEE blocks have the ability to communicate with an EtherNet IP Scanner communication via tags.
The input assembly instance is 101 (0x65), the output assembly instance is 110 (Ox6E), and the
configuration assembly instance is 01 (0x01). The size of the input and output assemblies (in bytes) is
defined by the number of input and output words in your ARGEE program. The configuration size is
always 0.

Example of Communicating with a Turck PLC or TX500 Series HMI:

(ARGEE Setup)

10: 10 10: I0_ARGEE_TO_PLC

slote (TBEN-51-8DXP) -> (Number)
slotl (Basic) - <- Wordl (Number)
slot2 (Diagnostic) -» <- Word2 (Number)
slot3 (Input Latch Che-7) - ¢- Word2 (Number)
slot4 (Ext. Func. Digital) -» <- Word4 (Number)
slots (Ext. Func. Digital) - <- Words (Number)
sloté (Ext. Func. Digital) - - lords (Number)
slot? (Ext. Func. Digital) -» - Word? (Number)
:imt:: Eix: ::unc. g%g%:ai) e <- Words (Mumber)

° (Ext. Func. reita) - <- Word?® (Humber)
slotil@ (Ext. Func. Digital) -» ‘- Wordle (Number)
5lotll (Ext. Func. Digital) - Word1l Numb
sloti2 (Module status) -> < or‘d (umber‘)
ARGEE_TO_PLC () = <- Wordl2 (Number)
PLC_TO_ARGEE 0 . <- Wordl3 (Number)

I = | Condition [Tr‘ue J
Destination: |O_ARGEE_TO_PLC_WordD
00 Assignment - B
Expression: 65280
(CODESYS 3 Setup)
-
Edit connection
Connection Path Settings

@) generate path automatically

Cancel

Configuration Assembly
Class ID 16# 4 Instance ID 16% 1 Attribute ID 16% 3
Consuming Assembly (0—->T)
Clsss D 16% 4 Attribute ID 162 3

Producing Assembly (T—->0

Class ID 16¥ 4 Instance ID 16%65 Attribute ID 16% 3

() user-defined path

I I

Generic Parameters

Connection Path 20042401 2C 6E 2C 65
Trigger Type RFI {ms) 10 =
Transport Type Timeout Multiplier
Scanner to Target (Qutput) Target to Scanner {Input)
|0—>T Size (Bytes) 4 I I T-->0 Size (Bytes) 2 I

Config#1 Size (Bytes) 0

Config#2 Size (Bytes) 0

IConnect\on Type |Point to Point - I
Fixed/Variable Fixed - Fixed/Variable Fixed -
Transfer Format 32 Bit Run/Idie - Transfer Format

Inhibit Time {ms)] Inhibit Time (ms) [0

IConne:tian Type Point to Point -

96

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ﬂi Ethernet m Generic_Etherfet_IP_device X
B Channels
Variable Channel Address Type Current Value Pr
Cannections] Generic AssemblyParam0 %eIB7 BYTE 0
% Bito %I¥7.0 BOOL
Assemblies b Bitl %eIx7.1 BOOL
User-Defined Parameters i Bit2 IX7.2 |BOOL
b Bit3 %IX7.3 BOOL
EtherNet/IP IO Mapping *» HES silime DL
] Bit5 %eIN7.5 BOOL
Status % EGit6 %IX7.6 BOOL
b] Bit7 %IXN7. 7 BOOL
Information = Generic AssemblyParam1 %IB3 BYTE 255
% Bit0 %INg.0 BOOL |[EUIS
% BitL %I¥g.1 BOOL LIS
L Bit2 %elxs.2 BOOL TRUE
b Bit3 %elX8.3 BOOL TRUE
% Bitd %I¥g.4 BOOL [l
b] Bit5 %I¥8.5 BOOL [
% Bite %INg.6 BOOL RIS
] Bit7 %eIN8.7 BOOL m
]‘_% Generic AssemblyParam2 SeQE4 BYTE 1
"$ git0 %Q40 BooL Gl
"% Eitl %QX¥4.1 BOOL [EAk=d
" Rit? woxa? Rool RN
. Local IO: Module_status - Input I: Task - MainTask
= [l PLC_TO_ARGEE »
[0 020000 0 + [Condition True
[]: 0x=0001
[2]: 0=xD0O00 _ Destination: |0_ARGEE_TO_PLC_WordD
Eﬂ 0x0000 — Assignment Expression: 55_280 ST
: 0=x0000

Explaining the example: The code loads 65280 into Word 0. This turns the high byte true (255) and the
low byte false. The PLC loads a 1 into word 1 output and sets PLC_Input to 1.

ﬂ NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the 10 Variable
Format (discussed in 11.4.2 |10 Variable Formats). For example, if the user wants to force word 0
bit 5 true, the destination variable would be I0O_ARGEE_TO_PLC_Word0.5.

97

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

10.4.2 PROFINET

ARGEE blocks have the ability to communicate with a PROFINET Controller via tags.

Example of Communicating with a Turck PLC or TX500 Series HMI:

(ARGEE Setup)

10: 10 - 10: IO _ARGEE_TO_PLC R
slote (TBEN-51-8DXP) - (Number)
5lotl (Basic) - <- Wordl (Number)
5lot2 (Diagnostic) - <- Word2 (Number)
Slot3 (Input Latch Cha-7) -> - Word3 (Number)
slot4 (Ext. Func. Digital) - - Wordd (Number)
slots (Ext. Func. Digital) -» - ‘- wWords (Number)
Sloté (Ext. Func. Digital) -¥ - Words (Number)
Slot7 (Ext. Func. Digital) - - Word? (Number)
Slot8 (Ext. Func. Digital) -

s1otg (Ext. Func. Digital) -> <- Words (Number)
slot1e (Ext. Func. Digital) -» <= Mords (Humber)
slot1l (Ext. Func. Digital) -» <- Wordle (Number)
slotl2 (Module status) - <= Wordll (Humber)
ARGEE TO PLC () _3 <- Wordl2 (Mumber)
PLC_TO_ARGEE () - <- Wordl3 (Number)

=1

Condrtien [True

Destination: |O_ARGEE_TO_PLC_WordD

Expression: 1

=1
=]

Aszignment

ﬂ NOTE

Use the ARGEE GSDML File to add the device to the project. It can be found in the ARGEE

Environment folder at www.Turck.com

(CODESYS 3 Setup)

= ﬁ Ethernet (Ethernet)
= ﬁ PM_Controller (PM-Controller)

= 'I'@ ARGEE_PM_Device (ARGEE PM Device)

Edil IN_1_WORD (IN 1 WORD)
Ei] oUT_1_WORD {OUT 1WORD)

Channels

Variable Mapping Channel Address Type Current Value
g] ARGEE input selW4 UINT 1

Variable Mapping Channel Address Type Current Value
T ARGEE output %QW1 UINT 1

98

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

http://www.turck.com/

!

Bl

[0]

Local I0: Module_status - Input
L PL

[1:
[21:
LR
[41:

C TO ARGEE

(el
UmUu

uuuuu

+ Task-MainTask

0x

Condition

True

Assignment

Destination: I0_ARGEE_TCO_PLC_Waord0
Expression: 1

Explaining the example: The code loads a 1 into IO_ARGEE_TO_PLC_WORDO. The PLC loads a 1 into
word 1 output.

NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the 10 Variable
Format (discussed in 11.4.2 10 Variable Formats). For example, if the user wants to force word O
bit 5 true, the destination variable would be I0_ARGEE_TO_PLC_Word0.5.

99

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

10.4.3 Modbus TCP/IP

ARGEE blocks have the ability to communicate with a Modbus TCP/IP Master. The Modbus Master can
establish communication via registers 0x4000 (register 16384 in decimal) and 0x4400 (register 17408 in
decimal). 0x4000 is a read-only register, while 0x4400 is a read/write register.

Example of Communicating with a Turck PLC or TX500 Series HMI:

(ARGEE Setup)

I0: IO
slote
Slotl
slotz
Slot3
Slot4
5lots
Sloté
slot?
5lots
Slots
Slotl@
Slotll
Slot1z

{TBEN-51-BDXP)

(Basic)

(Diagnostic)

(Input Latch Cha-7)
(Ext. Func. Digital)
(Ext. Func. Digital)
(Ext. Func. Digital)
(Ext. Func. Digital)
(Ext. Func. Digital)
(Ext. Func. Digital)
(Ext. Func. Digital)
(Ext. Func. Digital)

(Module status)
ARGEE_TO PLC ()
PLC_TO ARGEE ()

—

I0_ARGEE_TO_PLC
(Number)

Wordl
Word2
Word3
Word4
Words
Wordé
Word7
Worda
Wordg
Wordle
Wordll
Wordl2
Wordl13

(Number)
(Mumber)
(Number)
(Number)
(Number)
(Number)
(Mumber)
(Number)
(Mumber)
(Number)
(Number)
(Mumber)
(Humber)

ry

100

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

I | Condiicn [t rue j
_ Destination: [0 ARGEE TO PLC Word0
0.0 Aszsiemment
Expression: 1
(CODESYS 3 Setup)
- 5
MadbusChannel ﬁ
Channel
Name Channel 0
Access Type |[Reaerite Multiple Registers (Function Code 23) 'l
Trigger ’Cydt v] Cycle Time (ms) 100
Comment
READ Register
Offset 04000 -
Length 2 |
Error Handling |Keep last Value A
WRITE Register
Offset D400 -
Length 2
[oK J [Cancel

[Modbus_TCP_Slave x|] Modbus _TCP_Master

General

Modbus Slave Channel
Modbus Slave Init
ModbusTCPSlave Parameters
MadbusTCPSlave I/0 Mapping
Status

/) Local I0: Module_status - Inp
PLC TO :
0000

0x0000

0x0000

(HE
Bl

[Ethernet £5 Device
Channels
Variable Channel Address Type Curn
= % Channel 0 %IW4 ARRA...
= 4 Channel 0[0] sIw4 WORD 1
4 gt %INg.0 BOOL
% Bit1 %eIX8.1 BOOL
= P Channel 0 LWL ARRA...
+ K@ Channel 0[0] BLQW1 WORD O
= K@ Channel 0[1] SRQW2 WO 1
"% | Bit0 T BOOL
* Task-MainTask
0+ Condition True
00 e Destlnat!on: 10_ARGEE_TO_PLC_WordD
Expression: 1

Explaining the example: The above image is showing that the data has been successfully passed back
and forth between ARGEE and CODESYS 3.

NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the 10 Variable

Format (discussed in 11.4.2 |10 Variable Formats). For example, if the user wants to force word 0

bit 5 true, the destination variable would be IO_ARGEE_TO_PLC_Word0.5.

101

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11 Appendix | - Definitions

11.1 Built-in Functions (Ctrl-f)

To access Built-in Functions, the user can simply click anywhere in the code, and press Ctrl-f.

- .
R SO 1= [N B [A
Run Debug Print Hidl Project Set Title About
Project Title:
Variables and ARGEE Program
Deflnltlons + Keyboard shortcuts (hidden)
[+ Task-MainTask I
L
[2 + [Program Variables (hidden}| 0+ | Cenditon I[14 '/ 2
Destinatior
0.0 Assignmant . J
[1 = [Alias Variables (hidder)| Expressiony
Function Block ¥ | Add) Assignment ¥ | Add Block

102
Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2 Built-in Functions Menu

The user can use their mouse or the arrow keys on their keyboard to navigate the built-in functions menu.

Function: -
String/Arrays -3
Timer -
Counter -F
Math -
Brackets -
Boolean Legic -
Compare -
Trigger -
Bit Operations -3
Advanced IO/PLC Array/Int Operations - could overlap with mappsd IO -3
Protocol Conversion - Endianess -

11.2.1 Strings/Arrays

To access the String/Arrays functions, highlight String/Arrays, and press “>” on the keyboard or click “-*”
with the mouse to advance to the next or previous level.

Function: Function:
String/Arrays ->

Timer 7 ¢<- STR_LEFT(source_str,num_elems,dest str)

Counter -7 ‘ <- STR_RIGHT(source_str,num_elems,dest_str)

g:;:kets : <- STR_MID(source_str,start_pos,end_pos,dest_str)
Boolean Logic - <- STR_COPY(source_str,dest_str)

Compare > <- STR_CAT(source_str,dest_str) - String Concatinate
Trigger - <- STR_COMPARE(strl,str2) - return true if equal

Bit Operations N <- STR_TO_INT(source_str,base) - Returns a number
Advanced IO/PLC Array/-> <- INT_TO_STR({number,dest_str,base)

Protocel Conversion - -»> <- BRRAY_IMNIT(dest_array,offset,vall,val2,.....)

103

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.1.1 String Length

The user will use STR_LEN when the user wants to know the length of a string. The string length is
returned as an integer.

Example of String Length:

- ——
o T
#* & = B m B O
Run Debug Print 10 Config Hmi Project Set Title About
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shorteuts (hidden)
|= Task- MainTask
0 + [Program Variables
o lear Help: STR_COPY(source_strdest_str}
a
Name I Type - STR_COPY("Intern is playing with Strings”, Register_1)
of Array Elements: 32 (Clear field to disable array)
1 |Register 1 String - o [—— Destination: Register_2
2 |Register_2 Number v Expression: STR_LEN(Register_1}
Wz
Add Variable J Assignment ¥ | Add Block)
& i M > 7
Edit Code HMl Halt Step Continug Maodify Vars
Loadable code size 1232 bytes(out of 43008 bytes) Project size: 2208 bytes (out of 262144 bytes)
Runtime Status ARGEE Program
& TRACE
PROG CYCLE TIME:2 _
PLC_CONNECTED: 0 [z Task-MainTask
REGISTER 1: Intern is playing with Strings B)) .)
REGISTER 2 10 0 |(call STR_COPY("Intern is playing with Strings”, Register_1)
[SEPSEE itk 1
L. Local I0: TBEN_S1_8DXP_GW . e Destination: Register_2
| Local 10: Basic - Input - v Expression: STR_LEN(Reagister_1)
L. Local lO: Basic - Output

Explaining the Example: STR_COPY copies the string “Intern is playing with Strings” into Register_1.

The string “Intern is playing with Strings” is 30 elements long. The length of that string is stored in
Register_2.

ﬂ NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “”.

ﬂ NOTE
STR_COPY is discussed later in this chapter in section 11.2.1.5 String Copy.

104

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.1.2 String Left

The user will use STR_LEFT when the user wants to count from the left a certain amount source string
elements and store them in a different destination string. All destination string elements will be overwritten.

Example of String Left:

- - 2
i§ =] ~
Run Debug Print 1C Config Huml Project Set Title About

Project Title:

Variables and Definitions ARGEE Program

+ Keyboard shortcuts (hidden)

TBEN-51-8DXP

(192.168.1.12) V3.2.3.5

| Task-MainTask

0 + |Program Variables
5 = Help: STR_COPY(source_strdest_str)
a - - -
Name | Type - STR_COPY("Meah is playing with Strings”, Register_1)
of Array Elements: 32 (Clear fieid to disable array)
z Hely: STR_LEFT(source_sirnum_elems,dest_str)
1 Register_1 String v 1 |can
STR_LEFT(Register_1.7.Register_2)

of Array Elements: 32 (Clear field to disable array)

2 |Register_2 String v Call ¥ | AddBlock)

Add Variable)
E%4 il > > 7
Edit Code Hmi Halt Step Continue Modify Vars

Loadable code size 1272 bytes(out of 43008 bytes) Project size: 2259 bytes (out of 262144 bytes)

ARGEE Program

Runtime Status

4 TRACE
PROG CYCLE TIME:2

PLC CONNECTED: 0O ‘I Task - MainTask

IREGISTER 1: Noah is playing with Strings I
REGISTER 2:

Noah is g |cal
.\ -MainTask

STR_COPY("Noah is playing with Strings”, Register_1)

.. Local I0: TBEN_S1_8DXP_GW 1
|\ Local 10: Basic - Input -
I ocal I0: Rasic - Outnut

Call | STR_LEFT(Register_1,7 Register_2)

ENCR=RO]

Explaining the Example: STR_COPY copies the string “Noah is playing with Strings” into Register_1.

STR_LEFT takes the first 7 elements in Register_1 and places them in Register_2.

ﬂ o
Strings must be one element larger than the number of characters you want to store, and must be

surrounded by quotations “”.

ﬂ NOTE
STR_COPY is discussed later in this chapter in section 11.2.1.5 String Copy.

105

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.1.3 String Right

The user will use STR_RIGHT when the user wants to count from the right a certain amount source string
elements and store them in a different destination string. All destination string elements will be overwritten

Example of String Right:

- ——
%X B8 = B B O
un Debug Print 12 Config Hivll Project Set Title About
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hidden)
[+ Task - MainTask
0 + [Program Variables
o |can Help: STR_COPY(source_strdest str)
Name [Type - 2 STR_COPY("Noah is playing with Strings", Register_1)
of Array Elements: 32 (Clear field to disable array)
- : Helgf STR_RIGHT(source_strnum_elems,dest_str)
1 |Register_1 String v 1 |cal - -
STR_RIGHT(Register_1,7.Register_2)
of Array Elements: 32 (Clear field to disable array)
2 |Register 2 String v Call ¥ | Add Block
Add Variable)

\

g m M I> A
Edit Code HMl Halt Step Continue Modify Vars
Loadable code size 1272 bytes(out of 43008 bytes) Project size: 2254 bytes (out of 262144 bytes)

Runtime Status ARGEE program
& TRACE
PROG CYCLE TIME:2
PLC CONNECTED: 0O

‘: Task - MainTask
IREG\STER 1: MNoah is playing with Stringsl ,) -
REGISTER e 0 |(call STR_COPY("Noah is playing with Strings”, Register_1}
= . [-MainTask
I\ Local I0: TBEN_S1_8DXP_GW . .) .
| Local I0: Basic - Input Call | STR_RIGHT(Register_17 Register_2)
.| Locall0: Basic - Qutput

Explaining the Example: STR_COPY copies the string “Noah is playing with Strings” into Register_1.
STR_RIGHT takes the last 7 elements in Register_1 and places them in Register_2.

ﬂ NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “”

ﬂ NOTE

STR_COPY is discussed later in this chapter in section 11.2.2.5 String Copy.

106

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.1.4 String Middle

The user will use STR_MID when the user wants to pick out a certain amount of middle source string
elements and store them in a different destination string. All destination string elements will be overwritten.

Example of String Middle:

% & == B [@
Run Debug Print 10 Config HiMI Project SetTitle About
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program

+ Keyboard shortcuts (hidden)

_ |+ Task - MainTask

0 + [Program Variables

o lean Help: STR_COPY(source_str.dest_str)
al
Name [Type - STR_COPY("Noah is playing with Strings", Register_1)
of Array Elements: 32 (Clear field to disable array)
- : Helpy STR_MID(source_strstart_pos,end_pos,dest_str)
1 Register_1 String v 1 |can .
8 STR_MID(Register_1,8,21.Register_2)
of Array Elements: 32 (Clear field to disable array)
2 |Register_2 String v Call v | Add Block
Add Variable)
E Il M >
Edit Code Hul Halt Step Continue Madify Vars
Loadable code size 1276 bytes(cut of 43008 bytes) Project size: 2259 bytes (out of 262144 bytes)
Runtime Status ARGEE program

I TRACE
PROG CYCLE TIME:2 .
DLC _CONNECTED - O ‘: Task - MainTask
REGISTER 1: Noah is playing with Strings . A - ’ 0
REGISTER 2 playing with 0o |(call STR_COPY("Noah is playing with Strings”, Register_1})
T R TS
1! Local 10: TBEN_S1_8DXP_GW . , . .
| Local 10: Basic - Input 1 |Call |STR_MID(Register_1,821 Register_2)
. Local 10: Basic - Output

Explaining the Example: STR_COPY copies the string “Noah is playing with Strings” into Register_1.
STR_MID takes elements 8 through 21 in Register_1 and places them in Register_2.

ﬂ NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “”

ﬂ NOTE

STR_COPY is discussed later in this chapter in section 11.2.1.5 String Copy.

107

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.1.5 String Copy

The user will use STR_COPY when the user wants to copy elements into a string. All destination string
elements will be overwritten.

Example of String Copy:

R

=
=

out
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5

ﬂ E EEI Se@t\e @

|:U
=

5

E
&

&
=

=
=
]
]
&
5
=
s
=
e
=
o

Variables and Definitions ARGEE Program

+ Keyboard shortcuts (hidden)
[+ Task-MainTask

0 = [Program Variables
2 - Hellf STR_COPY(source_sir,dest_sir}
a
Name | Type - STR_COPY("Noah is playing with Strings”, Register_1)
of Array Elements: 32 (Clear fieid to disable array)
1 |Register_1 | String v Call ¥ | Add Block
g m o > 7
Edit Code Hil Halt Step Continug Modify Vars

Loadable code size 1212 bytes(o?l)f 43008 bytes) Project size: 2173 bytes (out of 262144 bytes)

Runtime Status ARGEE Program

I TRACE

PROG CYCLE TIME:2

PLC CONNECTED: 0

REGISTER 1: Noah is playing with Strings |
T -Mainlas

|| Local 10: TBEN_S1_8DXP_GW

[Task-MainTask

o |cal STR_COPY("Noah is playing with Strings”, Register_1)

Explaining the Example: STR_COPY copies the string “Noah is playing with Strings” into Register_1.

ﬂ o
Strings must be one element larger than the number of characters you want to store, and must be

surrounded by quotations “”.

11.2.1.6 String Concatenate

The user will use STR_CAT when the user wants to combine two strings to make a single string.

Example of String Concatenate:

S e D e 1= L 5 B [=)
Run Debug Print 10 Config HMi Project Set Title About
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program

+ Keyboard shortcuts (hidden)
|: Task - MainTask

0 ~ [Program Variables

Help: STR_COPY(source_str.dest_str}

=

Call

Name [Type STR_COPY("Noah is playing with Strings", Register_1)
of Array Elements: 64 (Clearfield to disable array)
- Help: STR_COPY (source_str,dest_str)
1 Register 1 | String ¥ 1 |cal -
STR_COPY(" and Arrays”,Register_2)

of Array Elements: 32 (Clear field to disable array) - -

2 Register 2 | String v Helf STR_CAT(source_strdest_sir) - String Concatinate
— 2 |call .

Add Variable J - STR_CAT(Register_2,Register_1)

108

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

g il >l >

Ed\‘TCDdE HMi Halt Step Continue Modify Vars
Loadable code size 1338 bytes(out of 43008 bytes) Project size: 2342 bytes (out of 262144 bytes)

Runtime Status ARGEE program
L TRACE
PROG CYCLE TIME:2 _
PLC CONNECTED: 0 + Task-MainTask

oan is playing wi rings and Arrays .)) . . .

REGISTER 2 and ArTays 0 |cCall |STR_COPY("Noah is playing with Strings”, Register_1)
= . - MainTask
= LDCEHO:TBE.N—SLSDXP—GW 1 Call STR_COPY(" and Arrays” Register_2)
.| Local I0: Basic - Input
! Local 10: Basic - Output
J Local 0: Basic - Diagnostics 2 |call |STR_CAT(Register_2,Register_1)
.| Lecal I0: Diagnostic - Input
.. Local I0: Input_Latch_Ch0_7 - Input

Explaining the Example: STR_COPY copies the string “Noah is playing with Strings” into Register_1.
STR_COPY copies the string “ and Arrays” into Register_2. STR_CAT concatenates both strings together
to make the new string “Noah is playing with Strings and Arrays.”

H..
Strings must be one element larger than the number of characters you want to store, and must be

surrounded by quotations “”.

11.2.1.7 String Compare

The user will use STR_COMPARE when the user wants to check and see if two strings are equal.

Example of String Compare:

1 el
~
L R e (& @
Bun Debug Print 10 Config Hul Project SetTitle About
Project Title: TBEN-$1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hidden)
_ [+ Task-MainTask
0 + [Program Variables
0+ (i [STRJiDHPARE(Registeril, Register_2) | P
Name Type
of Array Elements: 32 (Clear field to disable array) Destination: [0_Basic_Output_Output_value 0
1 |Register_1 ‘Smng v 00 | Assignment Expression: 1
of Array Elements: 32 (Clear field to disable array)
2 Register_2 ‘ String v Assignment ¥ | Add Block
_ Add Variable |

\ 4

& 1l > >
Edit Code HAull Halt Step Continue Modify Vars
Loadable code size 1244 bytes(out of 43008 bytes) Project size: 2222 bytes (out of 262144 bytes)

Runtime Status ARGEE Program

I TRACE
PROG CYCLE TIME :2

‘: Task - MainTask

PLC CONMECTED: 0
REGISTER 1

REGISTER 2 oD+ (I STR_COMPARE(Register_1, Register_2)

= [, [EMainTask

I\ Local 10: TBEN_S1_8DXP_GW Destination: 10_Basic_Output_Output_value_0

0.0 | Assignment

.. Local 10: Basic - Input Expression: 1
geall: Basic . Output
Output value 0:1
Cutput value 1:0

Explaining the Example: STR_COMPARE is constantly comparing the string elements in Register_1 to
the string elements in Register_2. When the two strings are equal, Output 0 turns on.

109

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ﬂ o
Strings must be one element larger than the number of characters you want to store, and must be

surrounded by quotations “”.

11.2.1.8 String to Integer
The user will use STR_TO_INT when the user wants to move a string into an integer register. The user
can also convert a binary, octal, decimal, or hexadecimal base number into decimal as it moves into the

new register.

11.2.1.8.1 String to Integer - Base 2 — Binary

_ [+ Task-MainTask
0+ | Program Variables
Destination: Register 2
T T 0 | Assignment . = .
DE Expression: STR_TO_INT(Register_1,2)
1.0 INIT - "11107
F# of Array Elements: 32 (Clear field to disable array)
} Assignment ¥ | Add Black |
1 |Register 1 String v
2 |F'.egisler72 Number v
AddVaHaDIeJ [HMiI Screens (hidden)
I TRACE
PROG CYCLE TIME:2
[Task - MainTask
REGISTER 1: 1110 o [— Destination: Register_2
REGISTER _2 . 14 = g Expression: STR_TO_INT{Register_1,2)
=) -MainTask

Explaining the Example: Register_1 is initialized to value “1110.” STR_TO_INT takes the binary string
in Register_1, converts it into a decimal integer and puts it into Register_2.

ﬂ o
Strings must be one element larger than the number of characters you want to store, and must be

“n

surrounded by quotations “”.

11.2.1.8.2 String to Integer - Base 8 — Octal

§ |+ Task - MainTask
0 + [Program Variables
Destination: Register 2
0 | Assignment =
Name [Type I Expression: STR_TO INT({Register_1.8) I
10 JNITIE
i of Array Elements: 32 Clear field to disable array) -
Y = i : ' v Assignment ¥ | Add Block
1 Register_1 String v
2 [Register 2 Number M
Add\-’ar\ablej [+ Hwmi Screens (hidden)

PRCG CYCLE TIME :2

PLC CONNECTED: 0 [+ Task-MainTask

Destination: Register_2

0 [Assignment
= g Expression: STR_TC_INT(Register_1,8)

Explaining the Example: Register_1 is initialized to value “16.” STR_TO_INT takes the octal string in
Register_1, converts it into a decimal integer and puts it into Register_2.

110

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ﬂ o
Strings must be one element larger than the number of characters you want to store, and must be

“n

surrounded by quotations “ .

11.2.1.8.3 String to Integer — Base 10 — Decimal

|+ Task - MainTask
0 + [Program Variables
o |ass " Destination: Register 2
i} ignmen
T — Tupe r Expression: STR_TO_INT(Register_1,10) |
of Array Elements: 32 Clear field to disable array) -
v = ; : v Assignment ¥ | Add Block |
1 ||Register_1 String v
2 [Register_. TIOTToaT ¥
AddVar\ab\eJ [+ HMiI Screens (hidden)

PROG CYCLE TIME: 2

PLC COMWECTED: 0O + Task-MainTask

Destination: Register_2

0 | Assignment
g Expression: STR_TC_INT(Register_1,10}

Explaining the Example: Register_1 is initialized to value “14.” STR_TO_INT takes the decimal string in
Register_1, converts it into a decimal integer and puts it into Register_2.

ﬂ o
Strings must be one element larger than the number of characters you want to store, and must be

surrounded by quotations “”.

11.2.1.8.4 String to Integer — Base 16 — Hexadecimal

Example of String to Integer - Base 16 — Hexadecimal:

T+

Task - MainTask

=
I+

[Program Variables

Destination: Register 2

0 | Assignment

| Name | Type - Expressionl STR_TO_INT{Register_1,16) I
1.0 JINIT :"e" — —
of Array Elements: 32 Clear field to disable array) -
g (c! : : : X Assignment ¥ | Add Black |
1 Register_1 String v
2 | |Register_2 Number v
Add Variable J + HMI Screens (hidden)

\

PROG CYCLE TIME:2

LC CONNECTED: 0 |+ Task-MainTask

REGISTER 1: e 0 [PAssionment Destination: Register_2

REGISTER _2_2 14 = 9 Expression; STR_TCQ_INT(Register_1,16)
= 1. -Mainlask

Explaining the Example: Register_1 is initialized to value “e.” STR_TO_INT takes the hexadecimal string in
Register_1, converts it into a decimal integer and puts it into Register_2.

111

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ﬂ o
Strings must be one element larger than the number of characters you want to store, and must be

“«n

surrounded by quotations “ .

11.2.1.9 Integer to String

The user will use INT_TO_STR when the user wants to move an integer into a string. The user can also
convert the integer into a binary, octal, decimal or hexadecimal base.

11.2.19.1 Integer to String — Base 2 — Binary

[+ Task-MainTask

b= |Program Variables Help: INT_TC_STR(numberdest_str.base)
Name] Type g jcal INT_TO_STR(14. Register_1.2)
I # of Array Elemen-ls-. 32 (Clear field o disable array) I
1 |Register_1 | String v Call M m)

Add Variable)

\

PROG CYCLE TIME:2

o) MECTED 0 [+ Task-MainTask

IREG|STER 1: 1110 I

TR 0 |call |INT_TO_STR(14,Register_1.2)
.\ Local 10: TEEN_S1_8DXP_GW

Explaining the Example: INT_TO_STR converts the decimal integer 14 into binary and puts that value
into Register_1.

11.2.1.9.2 Integer to String — Base 8 — Octal

[+ Task- MainTask
0 + [Program Variables
Help: INT_TC_STR(numberdest_strbase)
0 Call =
Name] Type - INT_TO_STR(14, Register_1.8)
of Array Elements: 32 (Clear field to disable array)
1 ||Register_1 String v Call ¥ | _Add Block
Add Variable)
PROG CYCLE TIME:2 .
PLC_CONNECTED: 0 [+ Task-MainTask
REGISTER 1: 16 .
RS 0 |Call |INT_TO_STR(14, Register_1.8)
. Local 10: TBEN_S1_8DXP_GW

Explaining the Example: INT_TO_STR converts the decimal integer 14 into octal and puts that value
into Register_1.

112

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.193 Integer to String — Base 10 — Decimal

[+ Task-MainTask
Help: INT_TO_STRi{number,dest_sir.base)
Name [Type g |cat INT_TO_STR(14, Register_1,10)
of Array Elements: 32 (Clear field to disable array)

Register_1 | String v Call ¥ | Add Block)

Add Variable |

+ Task - MainTask

0 + [Program Variables

PROG CYCLE TIME :2

REGISTER 1: 14) .
=TT 0 [Call |INT_TC_STRi14, Register_1,10)
. Local lO: TBEN_S1_8DXP_GW

Explaining the Example: INT_TO_STR converts the decimal integer 14 into decimal and puts that value
into Register_1.

11.2.1.9.4 Integer to String — Base 16 — Hexadecimal

[+ Task-MainTask

0+ | Program Variables

Help: INT_TO_STR(numberdest_str,base)

0 Call
Name [Type - INT_TO_STR(14, Register_1,16)
of Array Elements: 32 (Clear field to disable array)

1 [|Register 1 | sting = Call | Add Block)

Add Variable |

I+ Task - MainTask

REGISTER 1: e . .
o |call INT_TC_STR(14, Register_1,16)

=0 =MainTas
. LocallO: TBEN_S1_8DXP_GW

FROG CYCLE TIME :2
= aTany =

Explaining the Example: INT_TO_STR converts the decimal integer 14 into hexadecimal and puts that
value into Register_1.

ﬂ o
Strings must be one element larger than the number of characters you want to store, and must be

surrounded by quotations “ .

113

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.1.10Array Initialize
The user will use ARRAY_INIT when the user wants to load certain array elements with pre-set values.

Example of Array Initialize:

+ Task- MainTask
1

0 + [Program Variables
Help: ARRAY_INIT(dest_array,ofisetvalivalZ,....)
Name] Tyupe g |can | ARRAY_INIT(Register_1,2,16,15,14,13)
of Array Elements: 8 (Clear field to disable array)
1 |(Register_1 | Number M Call v M)

Add Variable)

PROG CYCLE TIME :2

FLC CONNECTED: O [t Task-MainTask

|\ REGISTER_1)
o 11 EMainTask 0 |call | ARRAY_INIT(Register_12,15,15,14,13)

.. Local IO: TBEN_51_8DXP_GW

Explaining the Example: ARRAY_INIT looks at Register_1, offsets the elements by two and then writes
the integer values 16-13 into elements 2-5.

11.2.2 Timer

To access the Timer functions, highlight Timer and press “>” on the keyboard or click “ - *” with the
mouse to advance to the next or previous level.

Function: - Function:
string/Arrays -» <- START_TIMER(Timer,expiration_time)
<- EXPIRED({Timer) - returns True if timer expired
Counter i <- COUNT(Timer) - returns the number of ms since the
Math s
Brackets e
Boolean Logic -7
Compars -
Trigger -
-»

Bit Operations
Advanced IO/PLC
Protocol Conver:

-»
-»

11.2.2.1 Start Timer

The user will use START_TIMER when the user wants to start a timer. All values are in milliseconds.

Example of Start Timer:

[] ——
F B = = CE
Run Debua Print 10 Config S} Project SetTitle About
Project Title: TBEN-51-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shoricuts (hidden)
[Task - MainTask
0 + [Program Variables
oD+ | [R_TRIG{DDur_OpEn, Temp) A]
Name ‘
1 jmerd | 00 |can || Start_Time(Timer 1, 5000) |
2 |Temp ‘ Number v
Add Variable) Call | Add Block

114

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

"TURC K
seconds).

Explaining the Example: If the door opens, Timer_1 starts counting. Timer_1 expires after 5000ms (or 5

ﬂ NOTE

R_TRIG (Rising Edge Trigger) is discussed later in this chapter in section 11.2.8.2 Rising Edge
Trigger (R_TRIG).

11.2.2.2 Timer Expired

The user will use Expired when the user wants an action to occur after a timer has expired.
Example of Timer Expir

ed:
[- 7
& = = E B @
Run Debug Print 10 Confi Hul Project
Project Title:

Set Title

About

TBEN-S1-8DXP (192.168.1.12) v3.2.3.5
Variables and Definitions

ARGEE Program

+ Keyboard shortcuts (hidden)
0 + [Program Variables

[Task-MainTask
o0+ |IF |:R7TRIG(Door'70pen, Temp) /
Nime Type
1 || Timer 1 Timer/Counter ; .
I = I 0.0 | cal Start_Time(Timer_1, 5000) I
2 |Temp Mumber v
Add Variable Call v | Add Block)
_ 1+ [IF |:Door' Open & Expired(Timer_1) /
[1 = [Alias Variables (hidden)|
Function Block TS Lo |r— Destination: Alarm
— Expression: 1

Explaining the Example: When the door opens, Timer_1 starts. If the door is still open when Timer_1
expires, the alarm turns on.

ﬂ NOTE

R_TRIG (Rising Edge Trigger) is discussed later in this chapter in section 11.2.8.2 Rising Edge
Trigger (R_TRIG).

115

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.2.3 Timer Count

The user will use Count when the user wants an action to occur at a certain instant in time (before the
timer has expired).

—

Example of Timer Coun

] —-—
T GIL
Run Debug Print 10 Config HMI Project Set Title About
Project Title: TBEN-S$1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hidden)
[+ Task- MainTask
0 = [Program Variables
0=+ If [R_TRIG(Door_Open, Temp) 4]
Name [Type
1 [Timer 1 | TimerfCounter v :
00 |call Start_Time(Timer_1, 5000)
2 |Temp | Number v
Add Variable call | Add Block)
1+ | Door Open & (Count(Timer_ 1)=2508) ,
[1+ [Alias Variables (hidden)| [J
Function Block v| Add) 10 | Assignment DestinationIAIanﬂ I
_ Expression: 1

Explaining the Example: When the door opens, Timer_1 starts. If the door is still open after 2500ms (2.5
seconds), a light will turn on.

ﬂ NOTE
R_TRIG (Rising Edge Trigger) is discussed later in this chapter in section 11.2.8.2 Rising Edge
Trigger (R_TRIG).

11.2.3 Counter

To access the Counter functions, highlight Counter and press “-*” on the keyboard or click “ - *” with the
mouse to advance to the next or previous level.

Function: o Function:

String/Arrays 7 <- EXPIRED(Counter) - returns True if Counter
Timer - <- COUNT{Counter) - returns the current count
Math b

Brackets -

Boolean Logic -

Compare -

Trigger -

Bit Operations -

Advanced IO/PLC Array -»

Protocol Conversion - -»

116

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.3.1 Counter Expired

The user will use Expired when the user wants an action to occur after a counter has expired.

Example of Counter Expired:

=] --——
. = B [
Run Debug Print 10 Config Hmi Project Set Title About
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hidden)
[+ Task - MainTask
0 = [Program Variables
0 + | Condition |:R_TRIG{Door‘_0pen, Temp) 4‘
Name Type
1 |Timer_1 Timer/Counter ¥ oo Counter: Counter_1
2 |Temp Number v - Preset: 10
Add Variable
Count Up ¥ | AddBlock)
[1 = TAlias Variables (hidden)| Condition ¥ | Add Block |
Function Block Y| Add . 1
2=+ | |EXPIRED(Counter 1) P
I Destination: Alarm I
2.0 Assignment
Expression: 1

Explaining the Example: When the door opens, Counter_1 counts up one time. Couner_1 expires after
10 counts. If Counter_1 expires, an alarm turns on.

ﬂ NOTE

R_TRIG (Rising Edge Trigger) is discussed later in this chapter in section 11.2.8.2 Rising Edge
Trigger (R_TRIG).

117

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.3.2 Counter Count

The user will use Count when the user wants an action to occur at a certain count (before the counter has
expired).

Example of Counter Count:

] B
* & = GEE
Run Debug Print 10 Config Hul Project Set Title About
Project Title: TBEN-S1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hidden)
[+ Task - MainTask
0 + |[Program Variables
0 + | Condition [R_TRIG{Dour‘_Open, Temp) /,]
Name Type
1 |Timer_1 Timer/Counter ¥ Counter: Counter_1
2 |Temp MNumber v Lo Preset: 10
Add Variable |
Count Up v | AddBlock)
|1 + |Alia5 Variables {hrdd‘en” Condition ¥ | Add Block)
Functicn Block v | Add
Add) 2+ K I [counT(counter_1) = 2 | P
Destination: Alarm
20 Assignment
Expression: 1

Explaining the Example: When the door opens, Counter_1 counts up one time. Counter_1 expires at 10
counts. If the door is opened 2 times, a light turns on.

ﬂ NOTE
R_TRIG (Rising Edge Trigger) is discussed later in this chapter in section 11.2.8.2 Rising Edge
Trigger (R_TRIG).

11.2.4 Math

The user will use Math Operations if they want to monitor, compare, or combine data from different
registers. To access the Math functions, highlight Math and press “>” on the keyboard or click “- *” with
the mouse to advance to the next or previous level.

Function: Function:
String/Arrays -
Timer -

Counter - €= -
Math _3 . &

Brackets - - f
Boolean Logic - ‘ <- % - Modulo
Compare -

<- abs{number)

Trigger ->
8it Operations - <- min{numl,num2)
Advanced IO/PLC Array/Int Operations -> <= max{numl,num2}
Protocel Conversion - Endianess -

118

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.4.1 Addition

The user will use add (+) to add one value to another value.

Example of Add:

=]

= | Condition I:I:}_Basic_Inpu't_Inp ut_value_@

Destination: Temporary_Register

=
=1

0.0 Aszzigmment

Expression: IF{egister_A + Register_ B I

Explaining the Example: When Input_value_0 goes true, the value in Register_A will be added to the
value in Register_B. The result is placed in Temporary_Register.

11.2.4.2 Subtraction

The user will use subtraction (-) to subtract one value from another value.

Example of Subtraction:

=1

= | Condihien [{Register_A - Register_B) |» 1

Col [1O Basic_Output_QOutput_value_1

Explaining the Example: The user is subtracting the value in Register_A from the value in Register_B.
When Register_A minus Register_B is greater than 1, the user Coils on Output_value_1.

11.2.4.3 Multiplication

The user will use multiplication (*) to multiply one value with another value.

Example of Multiplication:

(=]

= | Condiion [{Register_A * Register_B) |k 12€@

0.0 Col | |0 Basic_Output_Output_value 1

Explaining the Example: The user is multiplying the value in Register_A with the value in Register_B. If
Register_A times Register_B is less than 1000, the user Coils on Output_value_1.

11.2.4.4 Division

The user will use division (/) to divide one value into another value.

Example of Division:

(=]

= | Condiion |:10_Bas ic_Input_Input_value_1

Destination: Temporary_Register

=
=

0.0 Assignment

Expression: (Register A [Register B)

Explaining the Example: When Input_value_1 goes true, the value in Register_A will be divided by the
value in Register_B. The result is placed in Temporary_Register.

119

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ﬂ NOTE
If the user is concerened about keeping the fractions, the user should set their program variable
type to “Floating.”

0 + |Program Variables
Name Type
1 |Temporary_Reqgister Fleating A
2 |Register A Floating v
2 Register B Floating v

If the registers are not set to floating, ARGEE will drop the fraction and just display the whole number.

For example:

36/6=6 > ARGEE displays “6”
34/6=5. > ARGEE displays “5”
6/36=< > ARGEE displays “0”

11.2.4.5 Modulo
The user will use modulo (%) if the user wants to capture the “remainder” after a division (/) has occurred.

Example of Modulo:

=]

Cendition |:1C|_Basic_Input_Input_value_l

Destination: Temporary Register

=]
=3

0.0 Assignment
Expression| (Register A % Register_B)

Explaining the Example: When Input_value_1 goes true, the value in Register_A will be divided by the
value in Register_B. The “remainder” from the division operation is placed in Temporary_Register.

For example:
36 /6 = “6” with a remainder of “0” - ARGEE displays “0”
34/ 6 = “5” with a remainder of “4” - ARGEE displays “4”
6 /36 = “0” with a remainder of “6” - ARGEE displays “6”

120

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.4.6 Absolute Value

The user will use absolute value (abs) to capture the magnitude of a real number without regard to its sign

(+/-).

Example of Absolute Value:

= | Condition |:ICI_Bas ic_Input_Input_value_1

(=]

Destination: Temporary Reqiste
Expressiof: abs(Register_A)

=]
=

0.0 Assignment

Explaining the Example: When Input_value_1 goes true, ARGEE will take the absolute value of the
integer in Register_A, and place into Temporary_Register.

11.2.4.7 Minimum Value
The user will use the minimum value (min) to compare multiple registers and place the smallest value in to
the destination register. The user can also use the minimum value (min) to compare multiple registers and

use the smallest value in a math operation.

Example of Minimum Value:

= | Cendrhien |:IO_Bas ic_Input_Input_wvalue_1

=]

Destination: Temporary_Register

=
=3

0.0 Aszsignment
Expressioff: min(Register A, Regiser_B)

Explaining the Example: When Input_value_1 goes true, ARGEE will take the smallest value between
Register_A and Register_B and place that value into Temporary_Register

OR

(=]

Condition |:10_Bas ic_Input_Input_wvalue_1

Destination: Temporary_Register

0.0 Aszsignment

Expression:| Register C + min(Register_A, Regiser_B)

Explaining the Example: When Input_value_1 goes true, ARGEE will take the smallest value between
Register_A and Register_B and place that value into the addition operation. The result will be put into
Temporary_Register.

121

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.4.8 Maximum Value
The user will use the maximum value (max) to compare multiple registers and place the largest value into
the destination register. The user can also use the maximum value (max) to compare multiple registers,

and use the largest value in a math operation.

Example of Maximum Value:

— | Condition |:IO_Bas ic_Input_Input_value_1

(=]

Destination: Temporary_Register
Expression| max(Register A Regiser B)

=3
[=1

0.0 A ssignment

Explaining the Example: When Input_value_1 goes true, ARGEE will take the largest value between
Register_A and Register_B and place that value into Temporary_Register.

OR

Condrhion |:I 0_Basic_Input_Input_walue_1

(=]

Destination: Temporary_Register

=]
=1

0.0 Assignment

Exprenionl Register C + max(Register_A, Regiser_B}I

Explaining the Example: When Input_value_1 goes true, ARGEE will take the largest value between
Register_A and Register_B and place that value into the Math Operation. The result will be put into
Temporary_Register.

122

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.5 Brackets

To access the bracket function, highlight Bracket and press “>” on the keyboard or click “ - *” with the

mouse to advance to the next or previous level.

Function:

String/farrays -
Timer -
Counter -

Brackets -

Boolean Logic -
Compare -
Trigger -

Bit Operations -»
Advanced IOSPLC -»
Protocol Convers-»

>

|Fun:tion: |

The user will use brackets () to show the order of operations while performing Math.

Example of Brackets:

= | Conditien hCLBasic_]nput_Input_value_l

(=]

Destination: Temporary_Register

=3
=1

0.0 Assignment

Expression: Register_A [|(Register_B + Register_C)

Explaining the Example: When Input_value_1 goes true, ARGEE will examine the “(Register_B +
Register_C)” operation first, and then divide that answer into the value in Register_A. The result will be

stored in Temporary_Register.

11.2.6 Boolean Logic

Boolean logic consists of AND (&), OR (I) and NOT (!) statements. To access the Boolean Logic functions,
highlight Boolean Logic and press “~*” on the keyboard or click “-*” with the mouse to advance to the

next or previous level.

Function:

String/Arrays ->
Timer -
Counter -z ‘
Math -
Brackets -
Compare ->
Trigger -
Bit Operations -
Advanced IO/PLC Array -»
Protocol Conversion - -»

Function:

<- & - Boolean AND
<- | - Boolean OR
<- | - Boolean MOT

ﬂ -
For information on bitwise Boolean operations, see 12.7.5 Advanced Bitwise Operations — Bit

Masking.

123

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.6.1 Boolean AND

The user will use the Boolean AND (&) operation if the user wants a specific Action to occur when more
than one condition is met.”

Example of Boolean AND:

= | Conditien [IO_Basic_Input_]nput_ualue_l & I0 Basic_Input_Input_wvalue 2

=]

: Destination: Register A
00 Assignment
Expression: 1

Explaining the Example: When both Input_value_1 AND input_value_2 are true, load the value “1” into
Register_A.

11.2.6.2 Boolean OR

The user will use the Boolean OR (I) operation if the user wants one of several Conditions to cause an
Action to occur.

Example of Boolean OR:

= | Condiion [ICI_Basic_]nput_lnput_value_l | I0 Basic_Input_Input_ wvalue 2

(=]

Destination: Register A

=3
=

0.0 Assignment
Expression: 1

Explaining the Example: When either Input_value_1 OR input_value_2 are true, load the value “1” into
Register_A.

11.2.6.3 Boolean NOT

The user will use the Boolean NOT (!) operation if the user wants an Action to occur while a Condition is
false.

Example of Boolean NOT:

L = | Condien [ICI_BEIS ic_Input Input_walue_ 1

Destination: Register A

=
t=1

0.0 Aszzignment
Expression: 1

Assignment ¥ | Add Block |

L = | Condien [! I0 Basic_Input_Input_wvalue_ 1

_ Destination: Register A
1.0 Aszzignment
Expression: [

Explaining the Example: When Input_value_1 is true, load the value “1” into Register_A. When
Input_value_1 is NOT true (or false), load the value “0” into Register_A.

124

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.7 Compare

The user will select the Compare function if he needs to compare two numbers and find the smallest or
largest, or see if they are equal or unequal. To access the Compare functions, highlight Compare and
press “~*” on the keyboard or click “ - *” with the mouse to advance to the next or previous level.

Function:

String/Arrays -
Timer -
Counter -
Math -
Brackets -
Boclean Legic -»
Trigger ->
Bit Operations ->
Advanced IO/PLC Array->
Protocol Conversion - -»

11.2.7.1 Greater Than

The user will use Greater Than (>) if the user wants a Condition to occur when one register value is
greater than another value.

Example of Greater Than:

Condition [Register'_.ﬂ. > Register B

=]

Destination: Register C

=3
=

00 Assignment
Expression: 1

Explaining the Example: When the value in Register_A is greater than the value in Register_B, the value
“1” will be loaded into Register_C.

11.2.7.2 Greater Than or Equal to

The user will use Greater Than or Equal to (>=) if the user wants a Condition to occur when one register
value is greater than or equal to another value.

Example of Greater Than or Equal to:

Cendiion I [Regis‘ter'_n »= Register_B I

=]

Destination: Register C

[=1
=1

00 Assignment
Expression: 1

Explaining the Example: When the value in Register_A is greater than or equal to the value in
Register_B, the value “1” will be loaded into Register_C.

125

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.7.3 Less Than

The user will use Less Than (<) if the user wants a Condition to occur when one register value is less than
another register value.

Example of Less Than:

Condition [Regis'ter‘_n < Register_B I

(=1

Destination: Register C

=]
t=1

0.0 Aszzignment
Expression: 1

Explaining the Example: When the value in Register_A is less than the value in Register_B, the value
“1” will be loaded into Register_C.

11.2.7.4 Less Than or Equal to

The user will use Less Than or Equal to (<=) if the user wants a Condition to occur when one register
value is less than or equal to another value.

Example of Less Than or Equal To:

- | Condition I[Register_A <= Register_B I /j
1

=

Destination: Register C

=
=

0.0 Aszzignment
Expression: 1

Explaining the Example: When the value in Register_A is less than or equal to the value in Register_B,
the value “1” will be loaded into Register_C.

11.2.7.5 Equal

The user will use Equal (=) if the user wants a Condition to occur when one register value is equal to
another value.

Example of Equal:

Condition I[Register_ﬂ. = Register B I /j

[[=]

Destination: Register C

=3
=1

0.0 Aszzignment
Expression: 1

Explaining the Example: When the value in Register_A is equal to the value in Register_B, the value “1”
will be loaded into Register_C.

126

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.7.6 Not Equal

The user will use Not Equal (<>) if the user wants a Condition to occur when one register value is not
equal to another value.

Example of Not Equal:

0 = | Conditien [Register_A = Register_B j
_ Destination: Register C
0.0 Aszzignment
Expression: 1
Assignment ¥ | Add Block)
1 = | Conditien megister_ﬁ <> Register_B j
_ Destination: Register C
10 Assignment
Expression: [

Explaining the Example: When the value in Register_A is equal to the value in Register_B, the value “1”
will be loaded into Register_C. When the value in Register_A is not equal to the value in Register_B, the
value “0” will be loaded into Register_C.

11.2.8 Trigger

To access the Trigger functions, highlight Trigger and press “-*” on the keyboard or click “ - *” with the
mouse to advance to the next or previous level.

Function:
String/Arrays
Timer

Counter

Math

Brackets
Boolean Logic
Compare

Bit Operations

Advanced IO/PLC Array
Protocol Conversion -

Function:
- F_COS5(value,storage_location) - true if Change of state
<- R_TRIG(value,storage_location) - true if Rising edge

<- F_TRIG(value,storage_location) - true if Falling edge

11.2.8.1 Change of State (F_COS)

The user will use F_COS if the user wants an action to occur only when a condition changes state.

'— Condition
|

|
Change of State

From Low to High

-

}— Condition
|

|
Change of State
From Low to High

—

127

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Condition
(F_COSW00.Slot 1. Input. Input_value_1,Temp_1) & 10.Slot1.Input. Input_value_1="1)

= The Condition that is being monitored for a Change of State.
= The register that stores the monitored Condition’s current state.

= The part of the Condition that tells ARGEE to monitor the “low to high” Change of State or the “high to low” Change of State.

Example of Change of State (F_COS):

= | Condrition [F_COSl:IU_Basic_Input_Input_value_l, Temp_1) & I0 Basic_Input_Input_wvalue 1 = 1 J

[=]

Destination: Register A

[=1
[=1

0.0 Aszzignment
Expression: 1

1 = | Conditien [F_COS(IO_Basic_Input_Input_ualue_:!, Temp_2) & I0 Basic_Imput_Imput_wvalue 1

1]
=
-

_ Destination: Register A
1.0 Aszzignment
Expression: 0

Explaining the Example: When Input_value_1 does a Change of State from low (zero) to high (one), the
value “1” is loaded into Register_A. When Input_value_2 does a Change of State from high (one) to low
(zero), the value “0” is loaded into Register_A.

ﬂ NOTE
Each monitored condition requires its own temp register.

11.2.8.2 Rising Edge Trigger (R_TRIG)
The user will use R_TRIG if the user wants an action to occur only during the rising edge of a condition.

Example of R_TRIG:

=

= | Condition [R_TRIG(IO_Bas ic_Input_Input_value 1, Temp_1))

Destination: Register A

=]
f=1

0.0 Assignment
Expression: 1

Explaining the Example: When Input_value_1 does a Change of State from low (zero) to high (one), the
value “1” is loaded into Register_A.

ﬂ -
Each monitored condition requires its own temp register.

128

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.8.3 Falling Edge Trigger (F_TRIG)

The user will use F_TRIG if the user wants an action to occur only during the falling edge of a condition.

Example of F_TRIG:

Condrhion [F_TRIG(IO_BaS ic_Imput_Input_wvalue_ 1, Temp_ 1))

=

_ Destination: Register A
0.0 Aszsipnment

Expression: 1

Explaining the Example: When Input_value_1 does a Change of State from high (1) to Low (0), the
value “1” is loaded into Register_A

IIE!I NOTE
Each monitored condition requires its own temp register.

11.2.9 Bit Operations

To access the Bit Operations functions, highlight Bit Operations and press “->” on the keyboard or click *
- »” with the mouse to advance to the next or previous level.

Function:

String/Arrays - Function:

Timer - ‘ GET_BITS(curr_val,offset,length) - return
Counter - <- SET_BITS{curr_wval,offset,length,bitfield)
Math -

Brackets -

Boolean Logic -

Compare -

Trigger ->

Advanced ICQ/PLC Array->

Protocol Conversion -->

11.2.9.1 Get Bits

The user will use GET_BITS if the user wants to get bits from a certain register, and put them into another
register.

Example of GET_BITS (Target Register, Bit Offset, Bit Length):

[+ Task-MainTask

0 + [Program Variables
0 + | Condition [tr"ue J
Name] Tyoe
[Destination: Register_2
1 Register_1 Number v 0.0 Assignment ' - Register_, .
2 ||Register_2 Number v EXDISSSIOHI GET_BITS(Register_1,2,2) I
a0 varibie J Assignment ¥ | Add Block

\

129

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

PROG CYCLE TIME -2

BlC CconnecTen o [Task-MainTask

REGISTER 1: 14

REGISTER 2 3 0+ |Condition true

T S AT TaS R

L. Local I0: TBEN_S1_8DXP_GW 00 P Destination: Register_2

L Local 0z Basic - Input - 4 Expression: GET_BITS(Register_1,2,2)

/. Local 10: Basic - Output

Explaining the Example: The value “14” is loaded into Register_1. Due to the bit offset being 2, ARGEE
starts counting at bit 2. Due to the bit length being 2, ARGEE takes the next 2 bhits, converts them to
decimal, and places the value “3” in Register_2. (View the below example)

The value“14"is currently in Register_1.
\ Due to the bit offset being 2, start counting here.
321
14=111

0
(Decimal) 14 (O (Binary)
Due to the bit length being 2, load these 2 bits into Register_2. The value“3”is loaded in to Register_2.

(Binary)u = 3 (Decimal)

11.2.9.2 Set Bits

The user will use SET_BITS if the user wants to get bits from a certain register and put them into another
register.

Example of SET_BITS (Target Register, Bit Offset, Bit Length, Replacement Value):

[+ Task-MainTask

0 + [Program Variables

0+ |Condiion [true)
Name] Type
1.0 fiNT ..14 Destination: Register_2
1 JRegister_1 Number v ili] Assignment —_
7 fregeter 2 T = Expression SET_BITS(Register_1.22.2) |
Add Variable | Assignment ¥ | Add Block

\ 4

PROG CYCLE TIME:2

PLC CONNECTED: (0 ‘I Task - MainTask
REGISTER 1

= . 0 + | Condition true

R
S\ -MainTask
.\ Local 10: TBEN_S1_8DXP_GW 0o Assignment Destination: Reqgister_2

i Local l0: Basic - Input - 9 Expression: SET_BITS(Reqister_1.222)
[\ Local I0: Basic - OQutput

H F E D

Explaining the Example: The value “14” is loaded into Register_1. Due to the bit offset being 2, ARGEE
starts counting at bit 2. Due to the bit length being 2, ARGEE takes the next 2 bits, replaces those bits
with the replacement value (a binary “2”), converts the new number to decimal and place that value in
Register_2.

The value “14"is currently in Register_1.
Due to the bit offset being 2, start counting here.

/

32

10
(Decimal) 14 = 17110 (Binary)

Due to the bit length being 2, these are the /

2 bits we swap out with the replacment bits. The”11"is replaced with*10"

/,H Binary)1010 = 10 (Decimal)
(Decimal) 2 = m (Binary) The value “10"is loaded in to Register_2.

130

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.10 Advanced IO/PLC Array

To access the Advanced IO/PLC Array functions, highlight Advanced IO/PLC Array and press “=>” on the
keyboard or click “- *” with the mouse to advance to the next or previous level.

Function: Function:
String/Arrays - GET_IO0 INP_INT(slot,bit io offset,
Timer - <- SET_IO OUTP_INT(slot,bit_io_offset

Counter - ¢- SET_IO_PARAM_INT(slot,bit_io_offse

Math - <- GET_IO _DIAG_INT(slot,bit_ioc offset
Brackets - ‘ <- GET_IO INP_ARR(slot,dest arr,dst_a

Boolean Logic - ¢- SET_IO OUTP_ARR(slot,src_arr,src_a
Compare -> <- GET_IO DIAG_ARR(slot,dest_arr,dst_
Trigger - <- GET_PLC_INP &RR{dest_arr,byte plc
Bit Operations - - SET_PLC_OUTP_ARR({src_arr,byte_plc_

Advanced TO/FLC Array -> <- WRITE_DS(stream_id,array,msg_len)
Protocol Conversion - -» <- READ_DS(stream_id,array,received_l

ﬂ NOTE
The Advanced IO/PLC Array built-in function blocks are for advanced users.

For the next several examples, we will be using a Turck BLCEN-6M12LT-2RFID-S-8XSG-P. It is important
for the user to know that BL Compacts are broken down into different sections (or slots). Slot 0 is the
communication card, Slot 1 is the first I/O card and Slot 2 is the second I/O card.

Slot 0: Communication Card

Slot 1:1/0 Card 1

A

O

«—+—Slot 2:1/0 Card 2

OO0 O |©

O

Power

:

131

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.10.1Get IO Input Integer

The user will use GET_IO_INP_INT if the user wants get input bits from a certain register and put them
into another register.

Example of GET_IO_INP_INT (Target Slot, Bit Offset, Bit Length):

8XSG-P Input Data Map

INPUT BYTE Bit7 Bit6 Bits Bit4 Bit3 Bit2 Bit1 Bit0
24 DI 2. DI 2. DI 2. DI 2. DI 2, |12 DI 2. DI 2.
25 - - - - - - - E

[+ Task-MainTask

0 + [Program Variables

0+ |Condiion [true p

| Name Type

1 |Regisler_1 ‘ Number o Destination: Register 1

0o Assignment
Add Variable J Expressioni GET_IO_INP_INT(2,0.1) I

PROG_CYCLE_TIME :3 |t Task - MainTask

PLC_CONNECTED: 0

REGISTER 1: o 0 £ |Condition true
. [=MainTask

. Local 10: Slot
., Local 10: Slotl - Input Destination: Register_1

0.0 Assignment
+ Local 10: Slotl - Output - g Expression: GET_IC_INP_INT(2,0,1)
. Local IO: Slotl - Diagnostics

0OFEHEED

.. Local I0: Slot - Input
Input_vahe 0:0
Input_vahe 1:0

\

PROG_CYCLE TIME :3 |: Task - MainTask
PLC CONNECTED : 0

REGISTER _1: 1 0 + | Condition true

= [} =MainTask

.\ Local 10: SlotD __ i

L) Local 10: Slot] - Input 0.0 Assignment Destination: Register_1

.. Local I0: Slotl - Output - Expression: GET_IC_INP_INT(2,0,1}
. Local I0: Slot] - Diagnostics

=i 0 0; Slot2 - Input

Input_value 0 :1

Explaining the Example: The user is using a BLCEN-6M12LT-2RFID-S-8XSG-P. The user wants to
monitor Input_value_0 on the 8XSG-P card and store that value in Register_1. The user uses the
GET_IO_INP_INT command and targets slot 2 (the 8XSG card), Bit 0 and the user only wants to monitor
1 bit. As Input_value_0 goes true, so does Register_1.

132

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.10.2 Set 10 Output Integer

The user will use SET_IO_OUTP_INT if the user wants set bits in an output register.

Example of SET_IO_OUTP_INT (Target Slot, Bit Offset, Bit Length, Replacement Value):

8XSG-P Output Data Map

OUTPUT BYTE Bit7 Bit 6 Bit5 Bit4 Bit3 Bit 2 |sit 1 Bit0
24 DO 2, DO 2, DO 2, Do 2, DO 2, DO 2, DO 2, DO 2,
25 : -
[+ Task-MainTask
0 + [Program Variables
0 + | Condition I:tr-ue /
Name [Type

10 |INIT:3 | - Help| SET_IO_OUTP_INT(slotbit_io_offset bit_langth.int_valug)

1 i 0.0 Call

1 [Regstod] Sl ol 2 SET_I0_OUTP_INT(2.0.2.Register_1)

Add Variable J
PROG_CYCLE TIME -5 =
T —— [+ Task-MainTask
REGISTER. 1: 3 - ™
= [} EMainTask 0+ | Condition me
.\ Local I0: Slotd
. Local T0: Slot1 - Tnput 00 call | SET 10 OUTP INT(2.0 A i
. Local 10: Slotl - Qutput — - T SINTC02 Register 1)
. Local I0: Slotl - Diagnostics
. Local I0: Slot? - Input
= Local 10: Slot2 - Output

Output_value 0 :1
Output_value_1 :1

Explaining the Example: The user is using a BLCEN-6M12LT-2RFID-S-8XSG-P. The user wants to set

outputs on the 8XSG-P card to correspond to the value that is in Register_1 (Register_1 is initialized to

value “3” for this example). The user uses the SET_IO_OUTP_INT command and targets slot 2 (the
8XSG card), Bit 0, sets his bit length to 2 and loads the value “3” (or 11 in binary) into the output register.
As a result, Output_value_0 & Output_value_1 go true.

11.2.10.3 Set IO Parameters Integer

The user will use SET_IO_PARAM_INT if the user wants set bits in a parameter register. Turck

recommends that the user sets their device parameters via the 10 Config tab or via the device webserver.
If the user wants to use this feature, please contact Turck for more information.

133

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.10.4 Get IO Diagnhostics Integer

The user will use GET_IO_DIAG_INT if the user wants get diagnostic bits from a certain register and put
them into another register.

Example of GET_IO_DIAG_INT (Target Slot, Bit Offset, Bit Length):

BLCEN-8M12LT-410L-4Al4A0-VI Diagnostic Data Map

INPUT BYTE [Bit 7 |Bit 6 [Bits |Bit 4 |Bit3 [git 2 Bit 1 |Bito |
Diagnostics 34 Hardware - - - Al 2, Over- |- Wire Break Al |Range Erro
Failure flow/Under- 2, (4...20mA (Al 2,
flow range only)

BLCEN-8M12LT-410L-4Al4A0-VI Web Server Diagnostic

! Gateway Diagnostics Diagnostics

Event Log Please use the refresh function (e.qg. F5) of your browser to update the values
Ethernet Statistics

EtherNet/IP™ Memory Map . -
_ Slot Source Diagnostics
Modbus TCP Memory Map J
Links ‘ 0 Gateway Module Diagnostics Available
Gateway Configuration INFO: ARGEE Project Running
Metwork Configuration
Change Admin Password 2 4AI4A0-V/1 Analog In O - Measured value out of range active
Analog In 0 - Wire break (4-20 ma only) active
Slot 1 - 4I0L

! Slet 2 - 4AT4A0-V/T

[+ Task-MainTask

0 * [Program Variables
0 + | Condition [true /,]
MName [Type
=L ‘;IT .3 1 | Numb a0 =i Help: GET_IO_DIAG_INT(slotbit_io_offsetbit_length)
1 1 umber v al
- [T = GET_IO_DIAG_INT(2,0.8)
Add Variable

\

PROG_CYCLE TIME : 6

P ONNECTED -0 + Task-MainTask
REGISTER 1 : 3 " -
L =MainTask Lz | Condition true

) Local I0: Slot)

.\ Local I0: Slotl - Input _

. Local I0: Slotl - Output - Assignment

|\ Local I0: Slotl - Diagnostics

.\ Local 10: Slot2 - Input

| Local I0: Slot2 - Qutput
C; 2 - Diag i

0Ca] 1] - ASI0S [ICS
Measured value out of range 0:

1
Measured_value_out_of range 1: 0
0
0

Destination: Fegister_1
Expression: GET I0_DIAG INT(2.0.8)

=
=

[[H B HEEBFD

Measured_wvalue_out of range 2:

Wire break 4 20 mA cnlv _0: 1

Explaining the Example: The user is using a BLCEN-8M12LT-4I0L-4AI4AO-VI. The user wants to
monitor diagnostic data on the 4Al 4A0 card and store that value in Register_1. The user uses the
GET_IO_DIAG_INT command and targets slot 2 (the 4AlI4AO0 card), Bit 0 and the user wants to monitor 8
bits. When a wire break and an out of range error occur, the value “3” (or Binary 0000 0011) gets loaded
into Register_1.

ﬂ NOTE
To monitor port 2 diagnostics, the user should set their offset to 16.
To monitor port 3 diagnostics, the user should set their offset to 32.
To monitor port 4 diagnostics, the user should set their offset to 48.
The user should read the device data sheet to figure out additional information.

134

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.10.5Get IO Input Array

The user will use GET_IO_INP_ARR if the user wants to get an input array from a device. This command
is primarily used with Turck RFID and IO-Link modules. Turck recommends that the user uses the ARGEE
libraries when working with RFID and IO-Link. If the user wants to use this feature, please contact Turck
for more information.

11.2.10.6 Set 10 Output Array

The user will use SET_IO_OUTP_ARR if the user wants to set an output array on a device. This
command is primarily used with Turck RFID and 10-Link modules. Turck recommends that the user uses
the ARGEE libraries when working with RFID and IO-Link. If the user wants to use this feature, please
contact Turck for more information.

11.2.10.7 Get IO Diagnostics Array
The user will use GET_IO_DIAG_ARR if the user wants to get a diagnostic array from a device. This
command is primarily used with Turck RFID and I0-Link modules. Turck recommends that the user uses

the ARGEE libraries when working with RFID and 10O-Link. If the user wants to use this feature, please
contact Turck for more information.

11.2.10.8 Get PLC Input Array

The user will use GET_PLC_INP_ARR if the user wants to read an entire array from the PLC. This
command is extremely helpful when transferring RFID write data to the device.

Example of GET_PLC_INP_ARR (Destination Array, Byte PLC Offset, Byte Length):

[+ Task - MainTask

0 + [Program Variables
0 + |Conditien |true P
Name | Type e |
of Array Elements: 4 (Clear field to disable array) Help: GET_PLC_INF_ARR(dest_arr,byte_plc_ofsetbyte_length)
< |RFID_Write_Data Byte v oo eall GET PLC INP_ARR(RFID Write Data,0.4)

Add Variable |

\ 4

PROG_CYCLE TIME :5

PLC_CONNECTED: 0 [{=_Task- mainTask
= [J) RFID_WRITE_DATA N
o lenoth=1 elem_size=1 Lz | Condiien tme

0 Call | GET_PLC_INP_ARR(RFID_Wiite Datz0.4)

[0] - 0x11
[1] : 0x22
[2] : 0x33
[3] - 0xdd

o0 =MainTask

. Local 10: Slotd

. LocalIO: Slotl - Input

.\ Local IO: Slotl - Diagnostics

.\ Local1O: Slot2 - Input

.. Local I0: 8lot2 - Output

.\ Local I0: Slot - Diagnostics
§ TE

3

OFHFHFEEMBD

[0]: 0=2211
1] Oxd433

Explaining the Example: RFID write data is sent from the PLC and loaded into program variable
RFID_Write_Data. The user uses the GET_PLC_INP_ARR command, sets an offset of 0 and transfers 4
bytes (or two words) from the PLC to the devices.

135

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.10.9 Set PLC Output Array

The user will use SET_PLC_OUTP_ARR if the user wants to transfer an entire array to the PLC. This

command is extremely helpful when transferring RFID read data to a PLC.

Example of SET_PLC_OUTP_ARR (Source Array, Byte PLC Offset, Byte Length):

0 + |Program Variables

| Task-MainTask

0 + | Condition

[t

rue

P

Name Type

10 INT:[3=4

T NT 23 0o call | SET PLC_OUT ARR(RFID_Write Data,0.4)
1.2 |INIT:[1]=2

1.2 |INIT : [0]=1

of Array Elements: 4 (Clear field to disable array) Call ¥ | _Add Block J
1 |RFID_READ Data Byte v
Condition

Add Variable |

PLC CONNECTED: ©
= |4 RFID_READ_DATA

gh=d eler size=]

[3] : Om4
o =MainTask
. Local 10: Slot

NEHNEHEEEEED

Explaining the Example: RFID read data is loaded into program variable RFID_Read_Data. The user

i Local 10: Slotl -
o Local 10: Slotl -
o Local 10; Slatl -
o Local TO: Sloe2 -
o Local 10: Slotl -
1 Local T0: Slot? -
. PLC_TO_ARGEE

RG 0 PLC

Input
Ouipat
Diagnostics
Inpui
Output

Dingnmr'n

v | AddBlock |

\

[+ Task - MainTask

= | Condition

true

Call

SET_PLC_OUTP_ARR(RFID Read Data0.4)

uses the SET_PLC_OUTP_ARR command, sets an offset of 0 and transfers 4 bytes (or two words) to the

PLC.

11.2.10.10

The user will use the WRITE_DS command if the user is working with acyclic messaging. This command
is primarily used with 10-Link modules. Turck recommends that the user uses the ARGEE libraries when
working with 1O-Link. If the user wants to use this feature, please contact Turck for more information.

11.2.10.11

Write Data Stream

Read Data Stream

The user will use the READ_DS command if the user is working with acyclic messaging. This command is

primarily used with 10-Link modules. Turck recommends that the user uses the ARGEE libraries when
working with IO-Link. If the user wants to use this feature, please contact Turck for more information.

136

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.11 Protocol Conversion

To access the Protocol Conversion functions, highlight Protocol Conversion and press “->” on the
keyboard or click “- *” with the mouse to advance to the next or previous level.

Function: -
String/Arrays -
Timer -
Counter -
Math -r
Brackets -
Boolean Logic -3
Compare -
Trigger -
Bit Operations -
Advanced IQ/PLC Array -»

11.2.11.1 Little-endian, Get 16 Bits

) |

Function:
<- LE GET_16BIT{arr,offset) -

¢- BE_GET_16BIT(arr,offset) -
LE_GET_32BIT(arr,offset) -
BE_GET_32BIT(arr,offset) -
<- LE_SET_1&6BIT(arr,offset,val)
- BE_SET_1&BIT(arr,offset,val)
¢- LE_SET_32BIT(arr,offset,val)
<- BE_SET_32BIT(arr,offset,val)

The user will use LE_GET_16BIT if the user wants to do a protocol conversion from Big-endian to Little-
endian. All registers in ARGEE are Little-endian.

Example of LE_GET_16BIT (Target Array, Offset):

=
I+

[Program Variables

Name [Type

[+ Task - MainTask

0 + | Condition

INIT : [1]=2
INIT ; [0)=1
of Array Elements: 2

=l

(Clear field to disable array)

1 Register_1 | Byte v

Add Variable)

= L =MainTatk

J Local 1O: TBEN_S1_SDXP_GW
|} Local 1O: Basie - Inpur

L Local 10: Basic - Output

[truE A]
. Destination: Register_2
_ Expression: LE_GET_16BIT{Register_1.0) I
Assignment ¥ | Add Block |

\

[+ Task-MainTask

Condtvon

e

Dettination: Pegister_2
Expression: LE_GET_SBIT(Regiter_1.0)

Asnignanest

Explaining the Example: This example does not actually do anything special because the user is
converting Little-endian to Little-endian. The value “1” is loaded into Register_1 position zero and the
value “2” is loaded into Register_1 position one.

137

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Element [1]

v

Input Array 0000 0010

v

Converted Integer 0000 0010
11.2.11.2Big-endian, Get 16 Bits

Element [0]

v

0000 0001

v

0000 0001 = 513 (Decimal)

The user will use BE_GET_16BIT if the user wants to do a protocol conversion from Little-endian to Big-
endian. All registers in ARGEE are Little-endian.

Example of BE_GET_16BIT (Target Array, Offset):

[+ Task- MainTask

PROG CYCLE TIME:2

PLC CONNECTED: 0

REGISTER 1

. -MainTask

1\ Local 10: TBEN_S1_8DXP_GW

i Local 10: Basic - Input
.. Local I0: Basic - Output

HEED

\ 4

0 = [Program Variables
0 + | Condition [tr-ue /
Name Type
10 [INIT:[1]=2 Destination: Register 2
e estination: Register
L1 |INIT o= 0.0 Assignmeant 0 -
of Array Elements; 2 (Clear field to disable array) Expression: BE_GET_16BIT(Register 1,0} I
1 Register_1 Byte v
2 Register 2 Number o Assignment ¥ | Add Block |

[+ Task-MainTask

o=

Condition

true

0.0

Destination: Register_2

Assignment
BAMEE | oy pression: BE_GET_16BIT(Register_1.0)

Explaining the Example: The value “1” is loaded into Register_1 position zero and the value “2” is
loaded into Register_1 position one. The BE_GET_16BIT command swaps byte 1 with byte 2 and loads
the value “258” into Register_2.

Element [1]

v

Input Array 0000 0010

T

0000 0001

Converted Integer

138

Element [0]

v

0000 0001

0000 0010 = 258 (Decimal)

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.11.3 Little-endian, Get 32 Bits

The user will use LE_GET_32BIT if the user wants to do a protocol conversion from Big-endian to Little-
endian. All registers in ARGEE are Little-endian.

Example of LE_GET_32BIT (Target Array, Offset):

| Task - MainTask

=
I+

[Program Variables

0+ |Condiion |[true 4

Name Type

INIT [3]=4

=

Destination: Register 2

IExpression: LE_GET_32BIT{Register_1,0) I

H
=
W
I

0o Assignment

[

of Array Elements: 4 (Clear field to disable array)

Assignment ¥ | Add Block |
1 Register_1 Byte v
2 |Register 2 Number M Condition ¥ | Add Block

Add Variable)
PROG CYCLE TIME:2

PLC CONNECTED: 0 [+ Task-MainTask

REGISTER 2 :67305985 0 + | Condition frue

T - Mainias|

.. Local 10: TBEN_S1_8DXP_GW 0o RSN Destination: Register_2
., Local 10: Basic - Input = & Expression: LE_GET_32BIT(Register_1,0)
L. Local 10: Basic - Output

i

HH =

Explaining the Example: This example does not do anything special because the user is converting
Little-endian to Little-endian. The value “1” is loaded into Register_1 position zero, the value “2” is loaded
into Register_1 position one, the value “3” is loaded into Register_1 position two and the value “4” is
loaded into Register_1 position three.

Element [3] Element[2] Element[1] Element [0]

v v v \

Input Array 0000 0100 0000 0011 0000 0010 0000 0001

v v v \

Converted Integer 0000 0100 0000 0011 0000 0010 0000 0001 = 67305985 (Decimal)

139

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.11.4Big-endian, Get 32 Bits

The user will use BE_GET_16BIT if the user wants to do a protocol conversion from Little-endian to Big-
endian. All registers in ARGEE are Little-endian.

Example of BE_GET_32BIT (Target Array, Offset):

[+ Task-MainTask

=
I+

[Program Variables

0 + | Condition \:true 4

Name Type

INIT : [3]=4
‘NIT'{"L‘ Destination: Register_2

i 0.0 Assignment —
INIT : [1]=2 Expression: BE_GET_32BIT(Register_1.0) I

INIT : [0]=1
Assignment ¥ | Add Block)
1 |Repister 1 Byte T

of Array Elements: 4 (Clear field to disable array)
2 |Register_2 Number M Condition ¥ | Add Block |
Add Variable
PROG CYCLE TIME:2 _
PLC CONNECTED: 0 [+ Task-MainTask

REGISTER 2 : 16809060

N

0+ |Condition true

SEEEEE L
/. Local I0: TBEN_S1_8DXP_GW 0o Assignment Destination: Register_2

L. Local 10: Basic - Input I . Expression: BE_GET_32BIT(Register_1,0)
.\ Locall0: Basic - Qutput

Explaining the Example: The value “1” is loaded into Register_1 position zero, the value “2” is loaded
into Register_1 position one, the value “3” is loaded into Register_1 position two and the value “4” is
loaded into Register_1 position three. The BE_GET_32BIT command swaps all four bytes and loads the
value “16909060” into Register_2.

Element [3] Element[2] Element[1] Element[0]

v v v \

Input Array 0000 0100 0000 0011 0000 0010 0000 0001

PRE——

Converted Integer 0000 0001 0000 0010 00000011 0000 0100 = 16909060 (Decimal)

140

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.11.5 Little-endian, Set 16 Bits

The user will use LE_SET_16BIT if the user wants to set a value in an array that is in Little-endian format.

Example of LE_SET_16BIT (Target Array, Offset, Replacement Value):

[+ Task- MainTask

0 = [Program Variables
0 + | Condition [‘true /l
Name [Type
of Array Elements: 2 (Clear field to disable array) Help: LE_SET_18BIT(arr,ofsetval) - sets value in the array offsat

. 0.0 Call . =
1 Register_1 Byte ¥ - LE_SET_16BIT(Register_1,0,14)
Add Variable)

Call ¥ | Add Block '

$

|+ Task-MainTask

PROG CYCLE TIME:2
PLC CONMNECTED: 0O

=l L) REGISTER_1 .
Array- L0 slem_size=1 0 + | Condiion true
[1]:0x00 .
o O EMainTask 0.0 call |LE_SET_16BIT(Register_1,0,14)

.. Local 10: TBEN_S1_8DXP_GW

Explaining the Example: The user loads the value “14” (or Hex “e”) into Register_1. Little-endian counts
bytes from right to left so the hex value “0x0e” (or decimal 14) is placed in Register_1 position zero.

11.2.11.6Big-endian, Set 16 Bits

The user will use BE_SET_16BIT if the user wants to set a value in an array that is in Big-endian format.

Example of BE_SET_16BIT (Target Array, Offset, Replacement Value):

| Task-MainTask

0 = |Program Variables
Name [Type 0+ |Condition [true p
of Array Elements: 2 (Clear field to disable array)
1 |Register_1 Byte v 00 cal Help: BE_SET_16BIT(arr offsetval) - sets value in the array offsat
Add variale) = BE_SET_16BIT(Register_1.0,14)

\

+ Task-MainTask

PROG CYCLE TIME:2
PLC CONNECTED: 0
= [REGISTER_1

0+ |Condition true

0.0 Call |BE_SET_16BIT(Register_1,0,14)

|| Local I0: TBEN_S1_8DXP_GW

Explaining the Example: The user loads the value “14” (or Hex “e”) into Register_1. Big-endian counts
bytes from left to right so the hex value “Ox0e” (or decimal 14) is placed in Register_1 position one.

141

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.2.11.7 Little-endian, Set 32 Bits

The user will use LE_SET_32BIT if the user wants to set a value in an array that is in Little-endian format.

Example of LE_SET_32BIT (Target Array, Offset, Replacement Value):

Add Variable |

PROG CYCLE TIME :2
PLC CONNECTED: 0

[+ Task - mainTask

0 + |Program Variables
Name [Type 0+ [Condition [true A
#of Array Elements: 4 (Clear fleid to disable array)
1 Register_1 Byte v 0o -— Help: LE_SET_32BIT(arr,offsetval) - sets value in the array offset

LE SET 32BIT(Register 1,0,14)

\

[+ Task-MainTask

= |, REGISTER_1 .
Array: length=4,2lem_size=1 0 + |Condition true
[0] :0x0e
= .
[2]:0x00 0.0 call |LE_SET_32BIT(Ragister_10,14)
[3]1:0=00

Explaining the Example: The user loads the value “14” (or Hex “e”) into Register_1. Little-endian counts
bytes from right to left so the hex value “0x0e” (or decimal 14) is placed in Register_1 position zero.

11.2.11.8Big-endian, Set 32 Bits

The user will use BE_SET_32BIT if the user wants to set a value in an array that is in Big-endian format.

Example of BE_SET_32BIT (Target Array, Offset, Replacement Value):

Add Variable |

PROG CYCLE TIME:2
PLC_CONNECTED: 0
= [, REGISTER_1
Array: length=4 elem_size=1
[0] :0x00
[]:0x00
2] :0x00

[Task- MainTask

0 + [Program Variables
Name \ Type 0+ |Condifion [true J
of Array Elements: 4 (Clear field to disable array)
1 |Register_1 Byte v s cal Help: BE_SET_32BIT(arr,offset val) - sets value in the array offset

BE_SET_32BIT(Register_1.0.14)

\

[Task - MainTask

o=

Condition

true

0o

Call

BE_SET_32BIT(Register_1,0,14)

Explaining the Example: The user loads the value “14” (or Hex “e”) into Register_1. Big-endian counts
bytes from left to right so the hex value “0x0e” (or decimal 14) is placed in Register_1 position three.

11.3 ARGEE Security Features

11.3.1 Visual Behavior

If there is an ARGEE program running on the block, the BUS LED will flash green three times, and then
stay off for 1 second.

142

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

"TWURC K

If there is not an ARGEE program running on the block, the block’s LED’s will behave in accordance with
that block’s data sheet.

11.3.2 Connection Behavior
11.3.2.1 EtherNet IP Master

If there is an ARGEE program running on the block before a PLC connection is established:
B The PLC connection point combinations 101,102 or 103,104 will not be allowed

B ARGEE will block any attempt by the PLC to upload parameters from the block

B The PLC will only be able to make connection to the block via the ARGEE connection pair
101, 110

If the PLC makes a connection to the block before an ARGEE program is loaded:
B The PLC connection point combinations 101,102 or 103,104 will be allowed

B The ARGEE connection pair 101, 110 will not be allowed

B The ARGEE environment will not allow upload of new code

11.3.2.2 Modbus TCP Master

If there is an ARGEE program running on the block before a Modbus connection is established:
B Regular Modbus/TCP registers will not be accessible

B Access to Regular Modbus/TCP registers results in “exception”
B Only ARGEE Modbus/TCP registers can be read/written from:
[|

0x4000 - 0x407F (Registers 16384 - 16512 in decimal) Read only Input Data (ARGEE ->
PLC)

B 0x4400 — Ox447F (Register 17408 - 17536 in decimal) Read/Write Output Data (PLC ->
ARGEE)

If a Modbus/TCP connection is established before an ARGEE program is loaded:
B Regular Modbus/TCP registers are accessible

B Access to ARGEE-specific registers results in “exception”

11.3.2.3 PROFINET Master

If there is an ARGEE program running on the block before a PROFINET connection is established:

B Standard 10 PROFINET connection is not allowed. The ARGEE PROFINET connection is
allowed

B Access to the block can be established by installing the ARGEE GSD file to the project

If a PROFINET connection is established before an ARGEE program is loaded:

B The regular PROFINET module ID is accessible. ARGEE PROFINET connection is not
allowed. If the ARGEE environment attempts to load an ARGEE code when a standard
PROFINET connection is establish, the ARGEE environment will block the upload.

143

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ﬂ e
PLC Connection examples can be found in chapter 10 PLC Connectivity.

11.3.3 Password Protection — ARGEE Environment

All Turck block devices support a password-protected webserver. To access the block’s webserver, the

user needs to type the block’s IP address into any HTML5-compatible web browser.

[¥ Station Information x N+ - . . - . e - - N —
C A Notsecure | 192.168.154/info.html

S Apps [TURCKConnect D TURCKUSAold & TurckUSA-Home [} oneTURCKSite @ CitrixXenfipp [P Home - TUSA Teams

TURCK.COM For comments or questions, please email TURCK Support

TBEN-L4-8I0L

STATION > Station Information
Station Information
SaioeDiagiost:2 Station Information
Event Log
Ethemet Statistics W TBEN-L4-810L
EtherNet/IP™ Memory Map Identification Number 6814082
Modbus TCP Memory Map §
Firmware Revision V3.23.0
Links
Bootloader Revision Vv1.0.0.0
BASIC >
IO-LINK PORT 1 > EtherNet/IP™ Revision V27380
10-LINK PORT 2 > PROFINET Revision V1790
IO-LINK PORT 3 > Modbus TCP Revision V2400
(TS ERAe) c 10 Framework Revision V1.0240
I0-LINK PORT 5 >
10-Link Master Revision V2136.0
I0-LINK PORT 6 >
JO-LINK PORT 7 5 Digital IO Revision V10230

IO-LINK PORT 8 > Build Number 327

ﬂ NOTE
The default password to log into the block’s webserver is “password”.

To password-protect the user's ARGEE environment, the user must change the webserver password. To
change the webserver password, select Change Admin Password link, follow the instructions, and click

Submit. An example is shown below.

144

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

B Change Admin Password < I - T
] —
< C A Notsecure | 192.168.154/change admin password htm o a % @

1 Apps [W TURCKConnect G TURCKUSAold [# TurckUSA-Home [J oneTURCKSite @ CitrixXenapp [@P Home - TUSA Teams

TURCK.COM For comments or questions, please email TURCK Support '“ne“
TBEN-L4-8I0L LOGOUT [ADMIN@192.168.1.99]

STATION Change Admin Password

Station Information X .
This form allows you to setup your own password for your station. If you alter the default password, there's.

Station Diagnostics no way to recover the password except sending it to the TURCK service.

Event Log

Ethernet Statistics
EtherNet/IP™ Memory Map

New passors =
Modbus TCP Memory Map
Links Retype new password: E

Station Configuration

Old password: .

Submit Reset

Network Confiquration

Change Admin Pass\

I0-LINK PORT 1

Now, every time the user tries to log into the block, they will be prompted to input a password.

Enter Password:

L]

NOTE

To remove this protection, the user can simply change their webserver password back to
“password”.

145

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.3.4 Source Code Protection — Run Without Source

If a user wants to prevent “end users” from logging into the block and seeing or modifying code, the user
will want to use the Run Without Source feature.

The access Run Without Source, the user must first click on the Project link in the ARGEE menu bar.
F & = [P} [\ D

un Debug Print 10 Config HMI Set Title About
Edi} Code New Pru ect M ARGEE PRO Advanced Mode PROAd\.ranced Maode

If the user clicks on Run Without Source and then logs out of the environment, the ARGEE program code
will be hidden to anyone who tries to log into the block.

0

Logging in before clicking Run Without Source:

F 8B = = D
Run Debug Print 10 Config Project Set Title About
Project Title: TBEN-51-4DIP-4DOP (Simulation) V1.2.3.4
Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hidden)
|+ Task-MainTask
0 + | Program Variables
Name Type Add Condition

1 regl Number v

2 reg2 MNumber v

3 |tmi Timer/Counter ¥)| [HMi Screens (hidden)

4 |tm2 Timer/Counter ¥

5 cnt1 Timer/Counter v

8 |ent2 Timer/Counter ¥

Add Variable)
[1 + TAlias Variables (hidden)|

Functien Block v | Add

Logging in after the user click Run without Source:
Ry - (& (=] [mesm]
[ARGEEon TBEN-51-8D) X
& C Y | @ filey///C:/Users/Thawve/Desktop/Argee%203/env_3_2_39_5/argee_startup.htmH#stay b g

Project without the source code is loaded into the device
Erase it via the web server to be able to load new ARGEE programs!!!!

ﬂ o
The user needs to save a Master Copy of the program before the user logs out of the environment
if the user wants to view or edit the code in the future

146

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.4 System Performance

11.4.1 Scan Cycle Information
The ARGEE Scan Cycle is typically between 5 — 10 ms, depending on the code size. If the user attempts
to use ARGEE in an application with scan cycles less than 5 ms, it is possible that ARGEE may miss the

signal.

Example of Scan Cycle:

5ms 5ms
..ARGEE Count= 0—||—ARGEE Count=1 ———] -ARGEE Count= 2 ———|
| | | |
| |
Change'of State : Change of State |
From Low to High I From Low to High I
Signal Count =1 Signal Count = 2 \LSignaI Count=3 Signal Count=4
3ms 3ms 3ms 3ms
Ims Tms Tms

Explaining the Example: In this example, the user is hammering ARGEE with repeated 3 ms signals.
Notice that ARGEE does not catch all the signals, because the signal is occurring faster than ARGEE’s
Scan Cycle.

ﬂ NOTE
ARGEE is not suited for high speed motion applications.

11.4.2 10 Variable Formats

10 Variable Formats are normally used when working with 10-Link or transferring data with a PLC.

PROG CYCLE TIME:5

PLC CONNECTED 0 [+ Task- MainTask
= .\ [-MainTask)
)\ Local I0: TBEN_L4_BIOL_GW 2+ | Condition True
! Local 10: Basic - Input
. Local 10: Basic - Output 00 o] t Destination: 10_IC_Link_Port_1_Cutput_Cutput_data_word_0
|\ Local I0: Basic - Diagnostics - =) Expression: 1
.\ Local IO: 10_Link_Port_1 - Input
|1 Local I0: 10 Link Port 1 - Output
Cutput data word 1: 0
Explaining the Example: The user set IO-Link Port 1 (bit 0) true.
PROG CYCLE TIME:5 :
PLC CONNECTED: 0 [+ Task-MainTask
L\ [-MainTask .
| Local 10: TBEN_L4_BIOL_GW 0+ | Condiion True
., Local 10: Basic - Input
Local 10: Basic - Output Destination: 1C_lO_Link_Port_1_Output_Cutput_data_word_0.12
.., Local 10: Basic - Diagnostics 00 Assignment Expression: 1
.\ Local 10z 10_Link_Port_1 - Input

Local 10: 10 _Link Port 1 - Output
Cutout data word 0: 4096
Cutput data word 1: 0

Explaining the Example: The user set IO-Link Port 1 (bit 12) true.

147

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

The user can also target bits in a word by using Word.Offset.BitLength.

PROG_CYCLE_TIME -2

PLC_CONNECTED: 0

REGT- 23219
: 5

[~ MainTask

Local 10: TBEN_L5_8IOL_GW Destination: regi

Local 10: Basic - Input Expression: |0_IO_Link_Port_1_Input_Input_data_word_0
Local 10: Basic - Qutput

Local 10: Basic - Diagnostics
Local 10: 10_Link_Port_1 - Input
Input_data_word_0 : .
Input_data_word 1: 0 Destination: reg2
Input_data_word_2 - 0
Input_data_word_3: 0

B
3

0EE®EED
HEEEEE

N

Expression: 10_IO_Link_Port_1_Input_Input_data_word_0.12.3

Explaining the Example: The input value from 10-Link Port 1 is placed in REG1 and the value of word 0,
offset 12, 3 bits is placed in REG2.

HEX 5SAEB3
DEC 23219
OCT 55263

BIN di01]1010 1011 0011

148

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T+1 800 544 7769 | F +1 763 553 0708 | www.turck.com

"TWURC K

11.4.3 Defining Variable Types — (Advanced Definitions)

Allowed
— arithmetic e . .
Type Description Type expressions Specific actions Size
A 32-bit signed integer to be used for 3.2'bit All integer .
Number ; ; signed . . Assignment 4 bytes
arithmetic ; arithmetic
integer
Single precision floating point. Only 32-bit Al inteqer
Floating available in TBEN and FEN20-4DIP- signed ege Assignment 4 bytes
; arithmetic
4DXP integer
Strin Null-terminated array of ASCII X
9 character values stored as bytes
Byte One unsigned byte AI! integc_ar Assignment 1 byte
' arithmetic
Word One unsigned word AI! integ_er Assignment 2 bytes
’ arithmetic
. Used with appropriate functions, such 32-bit G S_pecmc 2Bl
Timer/ PO » . ; functions Timer on, Timer off,
as “expired,” “count,” and appropriate signed G : 4 bytes
Counter . iy - ; expired” and Start timer, Count
actions such as “Timer On integer q 7
count up, Count down
Integer variable that is used to
designate states in state machine.
Behaves identically to a regular
State/ integer variable except for 2 things: 32-bit All integer Assianment 4 bvtes
Enum 1) Initialize — will list states integer arithmetic 9 y
2) Inthe debugger, a state name
matching the current value will
show up
8 bytes
Retain Integer which is automatically saved 32 bit Al inteqer (4 bytes of data,
to flash. Syncs about every two signed T ege Assignment 4 bytes of
Number . ; arithmetic "
minutes. integer additional
information)
. . . . 8 bytes
_ Sln_gle-prec!smn floating point 32 bit ' (4 bytes of data,
Retain variable which is automatically saved . All integer .
signed . : Assignment 4 bytes of
Float to flash. Syncs about every two ; arithmetic "
. integer additional
minutes. ; ;
information)
149

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Type

PLC
Variables

Local IO

System
Variables —
PLC
Connected

System
Variables —
Program
Cycle Time

Description

Variables mapping upper level PLC
(Modbus/TCP, EtherNet/IP or
PROFINET) exchange data to an
integer variable accessible in the
program.

Input/Output/Diagnostic points

PLC Connected

Max cycle time (since program start)

150

Type

They are
mapped to
integer variables
in the program

They are
mapped to
integer variables
in the program

32 bit integer

32 bit integer
indicating time in
milliseconds

Allowed
arithmetic
expressions

All integer
arithmetic

All integer
arithmetic

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Specific
actions

Assignment

Assignment

Only 1 bitis
used to
indicate PLC
connected
state

Time from
the previous
cycle to the

current cycle.

Size

8 bytes

(4 bytes of
data, 4 bytes
of additional
information)

8 bytes

(4 bytes of
data, 4 bytes
of additional
information)

8 bytes

(4 bytes of
data, 4 bytes
of additional
information)

8 bytes

(4 bytes of
data, 4 bytes
of additional
information)

"TWURC K

11.5 I/O Variable Definitions

11.5.1 Slot “0” Diagnostics Definitions

Module_Diagnostics_Available : Module Diagnostics Bit

Station_Configuration_Changed : Station Configuration Changed Bit.

Overcurrent_lIsys : Station Overcurrent Register Bit

Overvoltage_Field_Supply_V1 - Overvoltage_Field_Supply_V2 : Station Overvoltage Register Bit
Undervoltage_Field_Supply_V1 - Undervoltage_Field_Supply_V1 : Station Under Voltage Register Bit
Modulebus_Communication_Lost : Module communication register Bit
Modulebus_Configuration_Error : Module Error Bit

Force_Mode_Enabled : Force Mode Enabled Bit

11.5.2 Slot 1 or 2 Input Definitions

Input_Value_0 - Input_Value_7 : Input Channel Registers
XCVR_DETUNED_O - XCVR_DETUNED_1 : Transceiver Detuned Bit
TFR_O0 - TFR_1 : Transfer Data Bit

TP_0-TP_1: Tag Present Bit

XCVR_ON_0 - XCVR_ON_1: Transceiver On Bit
XCVR_CON_O0 - XCVR_CON_1 : Transceiver Connected Bit
Error_0— Error_1: Error Bit

Busy_0-Busy_1: Busy Bit

Done_0 - Done_1: Done Bit

Error_code_0 _O- Error_code_2 0: Error Code Bits
Read_data_0_0 - Read_data_7_0: Read Data Registers

Diagnostics Definitions

Output_signal_overcurrent_1 - Output_signal_overcurrent_16 : Signal Overcurrent Error Bit
Overcurrent_on_sensor_group : Sensor Overcurrent Error Bit
Overcurrent_supply_VAUX1/2_at_channels_1-7 : Supply Overcurrent Error Bit
Overcurrent_VAUX1/2_Digital_In_CH1-16: AUX Power Overcurrent Error Bit
Measued_value_out_of_range_0 - Measued_value_out_of range_3: Measured Value Out of Range
Bit

Wire_break_0 - Wire_break_3 : Wire Break Bit. Used for wire break detection.
Hardware_failure_0 — Hardware_failure_7 : Hardware Failure Bit
Output_value_out_of_range_4 - Output_value_out_of_range_7: Output Value Out of Range Bit
Output_signal_overcurrent_0 - Output_signal_overcurrent_16 : Output Signal Overcurrent Bit
Transc_param_not_supported_0/1: Transceiver Parameter Not Supported Bit
Module_parameter_invalid_0/1: Module Parameter Invalid Bit
Hardware_failure_transceiver_0/1: Transceiver Hardware Failure Bit

Transc_power_supply_error_0/1: Transceiver Power Supply Error Bit

151

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

11.5.3 Slot 1 or 2 Output Definitions

Output_value_0 - Output_value_7 : Output channel register.
Reset_0 — Reset_1: Transceiver Reset Bit

XCVR_Info_0 - XCVR_Info_1 : Transceiver Information Bit
TAG_Info_0 - TAG_Info_1: Tag Information Bit

Write_0 — Write_1 : Write Bit

Read_0 - Read_1: Read Bit

Tag ID_0-Tag _ID_1: Tag ID Bit

Next_0 — Next_1 : Next Bit

XCVR_0 - XCVR_1: Turn Transceiver On Bit
Byte_count_0— Byte_count_2 : The Byte Count Bytes.
Domain_0 — Domain_1 : Domain Bit

Address_0 — Address_1: Set Read/Write Address Bit
Write_data_0_0 - Write_data_7_0 : Write Registers

152

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12 Appendix Il — Example Code

12.1 How to Erase a Project from a Device

12.1.1 Running an empty Project

One way to erase the code on the device, is to first start a New Project and then click Run. This action will
load an empty project to the device.

o £ I
Open/Save As New Project Convertto ARGEE PRO Run Debug Open/Save Ag

ﬂ o
Just starting a new project does not erase the code on your device. The user needs to run an
empty project to erase the device.

12.1.2 Using the Webserver Page

The user can also remove the ARGEE code by selecting Erase ARGEE Program from the device’s
webserver page.

» On Google Chrome or Firefox, type the device’s IP Address into the URL and hit Enter.

C | 01921681102

ﬂ NOTE
The user can find their device’s IP Address on the block itself, located in the hatch, set by rotary
dials, or by using the Turck Service Tool application.

» On the webserver page, login to the device and you should see 4 new tabs show up on the left.

LOGIN

— |

ﬂ NOTE
The default password for logging in should be “password”. If the user can’t login and has obtained
the device from another user, they may have changed the password.

» On the left side of webserver page, click the Station Configuration tab.

Modbus TCP Memory Map
Links
Station Configuration

Network Configuration
BEEP Network Configuration
Change Admin Password

153

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

» At the bottom of the page click Erase ARGEE Program

Reboot Reset to Factory Defaults Erase ARGEE Program

12.1.3 Using the Turck Service Tool
The user can also remove the ARGEE program via the Turck Service Tool

» Open the Turck Service Tool application

Files (36)

™ Turck Service Tool

I or
Turck Service
Tool

ﬂ NOTE
The Turck Service Tool is available for download at www.turck.us

» Click the search tab to find your device.

Search... (F5)} | Change (F2) Wink (F3]

Mo, MALC address MName

> Enable Expert View.

EN .| @

Language Expert view OM || Start DHCP (F&)

» Select your device simply by clicking on it and then click ARGEE (F8) and under the tab you should
see Delete program

EIP

Configuration (F7) | ARGEE (F&) Close

Version Ads Load program...

DP_3.4.05 |1

Delete program

Enable write protection

2 B|Eh [

Disable write protection

154

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

http://www.turck.us/

12.2 Trace Example

0+ | Condit "(F_COS(IO_Basic_]nput_Input_ualue_@,Temp_l) & I0_Basic_Input_Input_value_@=1) /J
Prefix String: Trace 1
0.0 Trace -
Expression: [
Trace ¥ | AddBlock)
N Conditi '(F_COS(ICI_Basic_]nput_Input_value_@,Temp_Z) & I0 Basic_Input_Input_wvalue_ @8=@) J
Prefix String: Trace 2
10 Trace -
Expression: 1
Trace v | AddBlock)

Explaining the Example: When Input_value_0 is true, Trace_1 time stamps that event. When
Input_value_0 goes false, Trace_2 time stamps that event. The Prefix String is a name that makes sense
to the user. The Expression can be any value or even another variable name that makes sense to the
user.

ﬂ NOTE
An example of Trace can be found in the Appendix 11.2.8.1 Change of State (F_COS).

The Trace example is continued on the next page.

Trace Example (Continued):

> Once the user has written the code, the user will click Run.

Fl &8 @ = O B B O

Run Debug Print 10 Config Project Set Title About

\ 4

To view the Trace, the user will expand the Trace folder underneath the Runtime Status heading.

@ Il > > A
Edit Code Huwmi Halt Step Continue Modify Vars
Loadable code size 1290 bytes(out of 43008 bytes) Project size: 2347 bytes (out of 262144 bytes)
Runtime Status ARGEE program
155

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

\

As the user triggers their condition true and false, the Trace data populates under the trace folder.

74 Il >l > a
Edit Code HMI Halt Step Continue Modify Vars
Loadable code size 1290 bytes(out of 43008 bytes) Project size: 2347 bytes (out of 262144 bytes)
Runtime Status ARGEE program
=]l & TRACE
Pause/Resume | Clear Trace £ Task-WainTask

[Time line||data N
275856403 |[Trace_z-1 0 + [Condition (F_COS(I0_Basic_Input_Input_value_0,Temp_1) & IC_Basic_Input_Input_value_0=1)
[2756446][1_|[Trace_1:0] ——
[2758368([3 |[Trace_2:1 a0 Trace :reflx St_rln;.;: ;racej
r5azea[i |[Trace 10 Xpression:
12758190)|3 |[Trace_2:1

= 1+ | Condition (F_COS(10_Basic_Input_Input_value_0,Temp_2) & IC_Basic_Input_Input_value_0=0)
[2758108|1 |[Trace_1:0
ey e)) Prefix String: Trace_2
[p757922|[1 |[Trace_10) T&ee | ¢y pression: 1
|2757830([3 |[Trace_2:1

ﬂ NOTE
To calculate how long the user’s condition is true, the user must subtract the two time stamps from
one another: 221196 — 221294 = 2 ms.

12.3 How to Call a Function Block

Example of calling a user-made Function Block:
i = G R)

—
Run Debug Print 10 Config HMI Project Set Title About
Project Title TBEN-$1-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hidden)
|z Task-mainTask
0 + |Program
Name [Type 0+ [Conditon (10 _Basic_Input_Input_value 1 P
1 |Unlock [Unlock_The Door ¥
Help: Unlock_The_Door()
Add Variable) w0 call P —The_Door()
Unlocki)
[1 = [Alias Variables (hiddr)] cal v Npiag)
‘ Condition ¥ | Add Block
3 + |Function Block : Unlock_The_Door Regular
Name Type Segment
0 |Unlock_Door_1 Number v || VARIABLE ¥ [+ _Function Block - Unlock_The_Door()
1 |Unlock_Door_2 Number ¥ || VARIABLE - 0+ [Conditon [true P
2 Unlock_Door_3 Number v || VARIABLE
Destination: Unlock_Door_1
Add Element | 00 P a— _Door_
Expression: 1
Function Block v | Add

Explaining the Example: When Input_value_1 goes true, the function block Unlock_The_Door will be
called.

ﬂ NOTE
Function blocks are explained in Chapter 5.8 Function Blocks.

156

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.4 Creating and Importing Structure Text (ST View)

Structure Text (ST) is a common PLC programming language that is based on Pascal. ARGEE allows
users to export their ARGEE project (Flowchart or Pro) in ST format, as well as convert imported ST into
ARGEE PRO. Individual variables and function blocks can also be imported and exported.

12.4.1 Example of Exporting an ARGEE Project as Structure Text

(ARGEE Setup)
+ Task - MainTask
0+ i Destination: reg1
0 = | Program Variables o (= :
MName Type Expression: regl+1
1 reg1 Number ¥ Help: my_function_block()
1 Call
- - - my_fxn
2 |my_fxn my_function_block ¥ y_fxn)
- + Function Block - my_function_block()
2 = | Function Block : my_function_block Regular ¥
= = Destination: vari
Name Type Segment 0 | Assignment)
0 vari Number v | VARIABLE v Expression: vari+1
| ——
s { = -] P [(0
=] -— —
Run Debug Print 10 Config Mi Project Set Title About
ST View:
ST View: VAR
d‘efaultitaskil :pefault_Task_1
wzefault_task_i:Default_hsk_i regl:INT Undo
ieg“m my_fxn:my_function_block
r;ny_f_xn_: my_function_black ENI’J_VAR
3 MODULE ("","");
END_VAR TASK Default_Task_1()
MODULE ("",""); VAR
TASK Default_Task_1() END_VAR Paste
VAR o
END_VAR VAR_INPUT
VAR INPUT ENDRvAR 5
e regli=reglsl; E\Ed&\\ Ctrl+A
regli=regl+l; my_fxn(}
my_fxn(); END_TASK Spelicheck 4
END_TASK FUNCTION_BLOCK my_function_block()
FUNCTION_BLOCK my_function_block() VAR Writing Direction »
"C:”_Im. varl:INT;
END_VAR END_VAR Inspect
VAR INPUT VAR_INPUT
EMD_VAR END_VAR
varli=varl+l; varl:=varl+l;
END_FUNCTION_BLOCK EMD_FUNCTION_BLOCK
HMI_BEGIN HMI_BEGIN
END_HHT END_HMI
E - 4
Import Text Above \mport Text Above

ﬂ NOTE

From here, open the file where you want to store the text, and paste the text there. Turck
recommends a blank .txt file created with Notpad.

Explaining the Example: An ARGEE project’s Structure Text was copied, pasted, and saved into a .txt
file.

157

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.4.2 Example of Importing Structure Text and Converting it into an ARGEE Project.

Open the file where the Structure Text is to be copied from. In this case, a .txt file created with Notepad

was used to store the Structure Text from the previous example. Select it all, copy it all, and then switch to
your open ARGEE environment:

%
=2

Copy [:?

Paste
Delete

Select All

Right to left Reading order

Show Unicode control characters

Insert Unicode control character 3
Open IME

Reconversion

Ln1, Col !

n
|

oy v EE

[

Set Title

£0

ST View:
VAR ST View:
default_ task__1:Default_Task_1
regl:INT VAR
5 default_ task_ 1:Default_Task 1
reg2: INT 5
; regl:INT
tm1: TIMER 5
: reg2:InT|
tn2; TINER 5
; tml:TIMER
cnt1:TIMER g
. tm2:TIMER
cnt2:TIMER £
. cntl:TIMER
END_VAR g
HODULE ("",""); CntZ:TIMER
TASK Default_Task_1() END_VAR
VAR MOBLE ("","");
ENDRVAE TaSK Default_Task_1()
VAR_INPUT T -
END_VAR END_VAR
END_TASK VAR_INPUT
HMI_BEGIN END VAR
END_HHT END_TASK
= HMI_BEGIN
Import Text Above END_HMI
Import Text Above

Undo

Paste

Paste as plain text
seectq{
Spellcheck

Writing Direction

Inspect

Ctrl+Shift+]

158

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ST View:

Delete

y
Import Text Above

ST View: ST View:

(VAR -
default__task__1:Default_Task_1

cs regl:INT
I my_fxn:my_function_block

I END_VAR

o MODULE ("","");

TASK Default_Task_1()
VAR

i e END_VAR

Select all CirleA VAR INPUT

END_VAR

Spelcheck > BRI R
END_TASK

Writing Direction ¢ FUNCTION_BLOCK my_function_block()
VAR
Inspect Ctrl+Shift+ varl:INT;

END_VAR

VAR_INPUT

END_VAR

varl:=varl+l;
END_FUNCTION BLOCK

y HMI_BEGIN e
Import Text Above p

END_HMI

[Import Text Above

i

hasndi
Debu

1
g
Run ebug Print
Project Title:

10 Config H

=

Variables and Definitions ARGEE Program

+ Keyboard shertcuts (hidden)

| Task - MainTask
0 + |Program Variables
Name Type) Destination: reg1
O | Assignment
1 reg1 Number v Expression: reg?i+1
2 |[my_fxn my_function_block ¥
Add Variable) Assignment ¥ | Add Block |

[1 = [Alias Variables {hidden)| =

Function Block - my_function_block{)

Destination: wvarl

o | Assignment
Expression: varl+1
2z |Function Block : my_function_block Regular ¥
Assignment ¥ | Add Block |
| Name | Type | Segment
0 Jvart [Number v [VARIABLE -+
Add Element J [z HMiI Screens (hidden)

Explaining the Example: Preexisting Structure Text was copied, pasted, and converted into an ARGEE
PRO project.

ﬂ NOTE

To import individual function blocks, just copy the function block’s definition in the preexisting

structure text, paste it below the last function block definition in your open project’s structure text,
and click Import Text Above.

159

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.5 How to Export a CSV File
12.5.1 HMI export of arrays

The HMI can export a CSV file with the Submit Action. The CSV is saved to the Downloads folder on the
connected computer. This action requires the following arguments.

e Program variable that holds the timer counter

e Update frequency of that timer in ms.

e Timestamp array containing the timer counter values.

e User's data array.

12.5.2 Example of Exporting a CSV

0 = |Program Variables
Name | Type
of Array Elements: 10 (Clear field to disable array)
1 CSV_Transfer_Array | Number v
of Array Elements: 10 (Clear figld to disable array)
2 Time_Stamp_Array Number v
3 Sample_Frequency Timer/Counter ¥
4 i Mumber v
50 [INIT: 10
5 |Array_Full Numbear v
Add Variable |

The user creates arrays for measurements and the timestamp.

[+ Task- MainTask

Help: START_TIMER(Timer,expiration_{ime)

i} Call
- 2 START_TIMER(Sample_Frequency,2000)

Wait Until [EXPIRED(Sample_Fr‘equency)

Destination: CSV_Transfer_Array[i]
Expression: |0_|O_Link_Port_1_Input_Input_data_word_0

2 Assignment

Destination: Time_Stamp_Array[i]
3 Assignment = =
Expression: j

Destination: i
4 Assignment
Expression: i+1

lun

Comment [Inita;ize the Array Full variable to the same size as the CSV Transfer_Array

lem
I+
=

[i=Arr‘ay_Full

Destination: i
6.0 Assignment
Expression: 0

In this example when the timer expires the CSV_TransferArray and Time_Stamp_Array are updated and
the array pointer/variable is incremented by 1.

[£ Hmi Screens

o=+ HMI Screen [CS\.I' Transfer Array

00 + Section [Sensor 1
Title: CS5V Transfer Array
0.0.0 mﬂl rsylh_lumben‘ Variable: CSV_Transfer_Armray
Units:
Title: CSV_of_measure_values

=]
=]

Variable: CSV(i, 2000, Time_Stamp_Array, CSV_Transfer_Array)

160

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

The HMI will not only display but allow the export of measurements with the Submit Action by using the

CSV(, , ,) function.

Screens

|CSV Transfer Array]

CSV Transfer Array

Sensor 1

=)

32467

e ey b

| SNy BN Ty SRSy FE [Sy S
| I n
3ohad by dad i

CSV Transfer Array

———_——————
|
L
w0
i
= L

8]=43325
[9]=45466

CSVY _of measure values J

B:] csv of measure v..csy

A
Thu Mov 30 2017 15:51:54 GMT-0600 (Central Standard Time)
Thu Mov 30 2017 15:51:56 GMT-0600 (Central Standard Time)
Thu Mov 30 2017 15:51:58 GMT-0600 (Central Standard Time)
Thu Mov 30 2017 15:52:00 GMT-0600 (Central Standard Time)
Thu Mov 30 2017 15:52:02 GMT-0600 (Central Standard Time)
Thu Mov 30 2017 15:52:04 GMT-0600 {Central Standard Time)
Thu Mow 30 2017 15:52:06 GMT-0600 (Central Standard Time)
Thu Mov 30 2017 15:52:08 GMT-0600 (Central Standard Time)
Thu Mov 30 2017 15:52:10 GMT-0600 (Central Standard Time)
10 | Thu Mov 30 2017 15:52:12 GMT-0600 (Central Standard Time)

o O

W = o

The measure data is displayed along with the time stamp. In this example, every 2 seconds.

161

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

B
32466
32467
34225
35450
37750
39410
41848
42673
43325
45466

12.6 Advanced Application Examples

12.6.1 Working with I10-Link
When a user combines 10-Link technology with ARGEE, the application solutions that can be created
become endless. 10-Link can support digital and analog signals. Because there are so many I0-Link

configurations, it is recommended that the user read the Turck 10-Link master manual before attempting
any l0-Link applications.

12.6.1.1 Working with 10-Link
Example of IO-Link:

(Customer’s Application)

. 10 Link Slaves
10 Link Master Input— e o]
. o e «—pOutput
-—.. o o o o
-— o o o o
“ 2 o o
. | ad
(ARGEE Setup)
0 + |Cendion [I0_IC0 Link Port_ 3 Input Input data_word 8.4 p
0.0 Coil | 10 10 Link Port 4 Output Output data word 0.7

Explaining the example: The user wanted an input on an 1O-Link slave to turn on an output on a different
I10-Link slave. The user modified the IO Variable Formats (Discussed in Chapter 12) to accomplish this
task.

ﬂ NOTE

Depending on the fieldbus used, it may be necessary to swap process data (Little-endian vs Big-
endian). The process data can be changed from the 10 Config tab. More information can be found
in the Turck IO-Link master manual chapter 4, page 4-4.

162

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.6.1.2 Acyclic Communication — Read

When working with acyclic communication, the first thing the user needs to do is import the 10-Link
libraries (Importing libraries is discussed in Chapter 5.9.3 Importing a Library).

Example of Acyclic Communication — Read:

(IODD file for an 10-Link Device)

Index Subindex = Name Value Range Default Access Rights Data
Storage
67 Flashing Frequency
67 1 Segment 1 Flashing Frequency (Hz) 0.5 through 20 1 w Yes
(ARGEE Setup)
Variables and Definitions ARGEE Program

+ Keyboard shortcuts (hidden)
[+ Task- MainTask

=
I+

Program Variables
Name Type o |ecan
1 I0L_Read 10L_AsyncRead ¥ - I0L_Read(1,67,1,read_data_port1)

of Array Elements: 100 (Clear field to disable array)

Byte v Call ¥ | AddBlock |

Help: 1OL_AsyncReadiport_num,index sub_index res_data)

Ira

read_data_port1

(ARGEE Debug Screen)

= |). READ_DATA_PORT1
Array: length=100.elem_size=1

[0]: 0x00

[1]: OxOf

[2]: 0x00

[3]: 0x00

= |, IOL_READ(IOL_ASYNCREAD)

& DS_RX_ARR
0 DS_TX_ARR
INDEX : 67
PORT NUM: 1
READ RES: 18
RES: 8
RES DATA LEN:4
SUB INDEX : 1
TMP : 19

Explaining the example: The user input three arguments into the IOL_Read function block: Port number,
index and sub index. The 10-Link device is connected to port 1 and used his devices IODD file to figure
out the correct index (67) and sub index (1). The returned value was put into the variable
READ_DATA_PORT1. The returned value in this case was 0x0f (or 15 in decimal).

163

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.6.1.3 Acyclic Communication — Write

When working with acyclic communication, the first thing the user needs to do is import the 10-Link
libraries (Importing libraries is discussed in chapter 5.9.3 Importing a Library).

Example of Acyclic Communication —Write:

(IODD file for an 10-Link Device)

Index Subindex A Name Value Range Default Access Rights Data
Storage
67 Flashing Frequency
67 1 Segment 1 Flashing Frequency (Hz) 0.5 through 20 1 w Yes
(ARGEE Setup)
Variables and Definitions ARGEE Program

+ Keyboard shortcuts (hidden)

[+ Task-MainTask

0 + |Program Variables
Name Type 0 Help: 10L_AsyncWrite(port_num,index sub_index,wr_datawr_data_len)
1 10L_Write 10L_AsyncWrite v |||~ 10L_Write(1,67,1.write_data_port1,2)
2.0 |INIT : [1]=0x0e
of Array Elements: 100 (Clear field to disable array) Call ¥ | AddBlock |
2 |write_data_port1 Byte v

(ARGEE Debug Screen)

= |, WRITE_DATA_PORT1
Array: length=100.elem_size=1

[0]: 0x00
[1]: OxDe
[2]: 0x00
[3]: 0x00

B L IOL_WRITE(IOL_ASYNCWRITE)
.. DS_RX_ARR
[+ .. DS_TX_ARR

CNT 2

IND1 : 17
INDEX -

PORT NUM: 1

BEAD RES: -3338944
RES

8
SUB INDEX : 1
WR DATA LEN:2

Explaining the example: The user input five arguments into the IOL_Write function block: Port number,
index, sub index, write data, and write data length. The user plugged their I0-Link device into port 1, and
used his devices IODD file to figure out the correct index (67) and sub index (1). The user initialized
write_data_portl with the value “e” in byte one. The user specified the data length to be 2 bytes. The
value OxOe (or 14 in decimal) was written to byte one.

164

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.6.2 Working with RFID

Many factors influence RFID Read/Write applications. The user can reference the RFID user manual for
more information about RFID.

12.6.2.1.1 RFID Communication — Read

When working with RFID, the first thing the user needs to do is import the RFID libraries (Importing
libraries is discussed in chapter 5.9.3 Importing a Library).

Example of RFID Communication — Read:

(ARGEE Setup)
+ Task-MainTask
0 + |Program Variables L
Name [Type 0+ |Condiion |[Tranciver Power_0n-2 P
1 blcen_rfid_s_read | BLCEN_RFIDS_Read v
of Array Elements: 64 (Clear field to disable array) 00 . o Destination: Tranciver_Power_On
0.0 signmen
2 read_data_port_1 Byte v Expression: 1
3 |Tranciver_Power_On MNumber v
Destination: |0_Slot1_Output_XCVR_0
4 [temp Number v 01 Assignment 7 = SO —
Add Variable) Expression: [1
Assignment ¥ | Add Block
Alias Variables (hidden) - -
1+ |IF |[R_TRIG(IO Slotl Input_TP_@,temp) P
F _ Block G Help: BLCEN_RFIDS_Read(slot.channel offset res_data num_bytes_to_read)
unction Block Group : 10 Call .
BLCEN RFIDS Routines bleen_rfid_s_read(1.0.0 read_data_port_1,64)
A N -
4 F;].Em Block : BLCEN_RFIDS_Read Regular Call v | AddBlock

(ARGEE Debug Screen)

READ_DATA_PORT_1
Array: length=64 elem_size=1

0]

[0]: 0x01
[1]: 0x00
[2]: 0x00
[3]: 0x00

= .. BLCEN_RFID_S_READ(BLCEN_RFIDS_READ)
.. BE_ADDR_ARR
CHANNEL :
CURR POS:
NUM BYTES TO READ:
OFFSET :
RESULT :
SLOT:
TO COPY:

-

W - oo

Explaining the example: The user input five arguments into the BLCEN_RFIDS_Read function block:
Slot number, channel number, bit offset, result data location, and number of bytes to read. Condition
statement 0 in the code is used to power up the transceiver. If statement 1 says whenever the tag present
bit goes true, perform one read command and store that value in read_data_port_1.

165

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.6.2.1.2 RFID Communication — Write

When working with RFID, the first thing the user needs to do is import the RFID libraries (Importing
libraries is discussed in chapter 5.9.3 Importing a Library).

Example of RFID Communication — Write:

(ARGEE Setup)
+ Task - MainTask
0 = |Program Variables e
Name [Type 0+ |Condition [Tranciver Powsr_on-@ P
1 |blcen_rfid_s_write | BLCEN_RFIDS _write »
20 [INIT : [0]=0x0e Destination: Tranciver_Power_On
of Array Elements: B4 (Clear field to disable array) 0.0 Assignment)
Expression: 1{
2 |write_data_port_1 Byte v
2 |Tranciver_Power_On Number v Destination: [0_Slot1_Output_XCVR_0
= = o1 Assignment = = = =
4 |temp Number ¥ Expression: 1
Add Variable |
Assignment ¥ | Add Block
[1 = TAlias Variables (hidden)| 1« | [R_TRIG(10_Slotl Input_TP_o,temp) J
Help: ELCEN_RFIDS_Write(slot,channel,offset,outp_data,num_bytes_to_write)
1.0 Call
Function Block Group : - blcen_rfid_s_write(1,0,0,write_data_port_1,64)
BLCEN_RFIDS_Routines
4 . |Function Block : BLCEN_RFIDS_ Write Regular * Call v |_Add Block
o (hidden)

(ARGEE Debug Screen)

= .. WRITE_DATA_PORT_1
Array: length=64 elem_size=1

[0]: OxODe
[1]: 0x00
[2]: 0x00
[3]: 0x00

= J) BLCEN_RFID_S_WRITE(BLCEN_RFIDS_WRITE)

® |, BE_ADDR_ARR

CHANNEL 0
CURR POS: 64
NUM BYTES TO WRITE :64
OFFSET: 0
RESULT : 1
SLOT: 1
TO COPY: 8

Explaining the example: The user input five arguments into the BLCEN_RFIDS_Write function block:
Slot number, channel number, bit offset, output data location, and number of bytes to write. Condition
statement 0 in the code is used to power up the transceiver. If statement 1 says, whenever the tag present
bit goes true, perform one write command, and write the value in write_data_port_1 to the tag. The value
0x0e (or 14 in decimal) was write to byte one the tag.

166

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.6.2.1.3 RFID Communication — Strings

When working with RFID, the first thing the user needs to do is import the RFID libraries (Importing
libraries is discussed in Chapter 5.9). Strings cannot be written or read from RFID tags directly. If writing,
the user’s string must be converted to a byte array, then written to the tag. If reading, the incoming byte
array from the tag must be converted into a string by the user. These processes are shown below.

12.6.2.1.3.1 Example of RFID Communication — Writing Strings

(ARGEE Setup) (ARGEE Code)

0 = |Program Variables a cal Help: STR_COPY(source_str dest_str)
Name Type el O .
| L - str_copy("FULL", my_string)
of Array Elements: & (Clear field to disabie array)
1 my_string | String M Destination: iterator
L 1 Assignment
of Array Elements: & (Clear field to disable array) Expression: 0
2 |bytes_sent_to_tag Byte v - }
2 [lterator Number = 2+ | whie |iterator < str_len{my_string) 4
_ Destination: bytes_sent_to_tag[iterator]
2.0 Assignment
Expression: my_string[iterator]
Destination: iterator
2.1 Assignment
Expression: iterator + 1

Explaining the example: The user wants to write the string “FULL” to an RFID tag. The characters
“FULL” are stored in my_string, then my_string is copied element-by-element to the byte array called
bytes_sent to_tag. The data in bytes_sent_to_tag is now ready to be written to the tag, using the
appropriate Write function from the Turck RFID library (not shown).

12.6.2.1.3.2 Example of RFID Communication — Reading Strings

(ARGEE Setup) (ARGEE Code)
0 = |Program Variables e
Name | Type o peoTEn Destination: iterator
of Array Elements: & (Clear field to disable array) Expression: (0
1 |my_string | String M 1= | wnie [iterator < 4 A
of Array Elements: & (Clear field to disable array)
- Destination: i
2 bytes_read_from_tag Byte v i sy my_string[iterator]
— - Expression: bytes_read_from_tag[iterator]
K] iterator MNumber v
Destination: iterator
11 Assignment
Expression: iterator + 1
Assignment ¥ | Add Block |
Destination: my_string[4
2 Assignment i ol
Expression: 0

Explaining the example: The user wants to store four characters read from a tag as a string. Data was
read from the tag and stored in bytes_read_from_tag by using the appropriate Read function from the
Turck RFID library (not shown). Bytes_read_from_tag is then copied element-by-element to my_string. A
zero is required at the end of my_string, because strings are null-terminated.

ﬂ o
Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”

167

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.6.3 Working with Analog

If the user wants to use an analog input signal to track errors and make corrections to an analog output
signal (similar to a proportional controller), they no longer need a PLC. ARGEE has the ability to apply
logic and math to analog signals.

Example of Working with Analog:

(Customer Application)

Proportional Controller Example

+
Analog | t Si | E Controller Output Output
nalog npu |gna=.ﬁ> ARGEE Controller onfroTer Ut Analog Output Device APt

Feed Back Loop

(ARGEE Setup)

0 |Cendifion [true)

Destination: |0 Slot2 Output Output value 4
Expression: 32767 - |O_Slot2_Input_Input_value_0

Explaining the example: The user wants to make a proportional controller. A proportional controller
continuously calculates the difference between the output and the input. The purpose of a proportional
controller is to minimize the difference (error) by adjusting the controller’s output. Analog sensors use 16-
bit signed integers. Therefore the range of the analog input signal is from -32767 to +32767. The user
want’s an inversely proportional controller, so they are taking 32767 — Input_value_0 and loading that
value into Output_value_4.

168

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.7 Advanced Analog Example — Inclinometer

In this example, the user wants to use an inclinometer to track the angle of a boom, and display the angle
on an HMIL. If it is in a safe operation range in the X Axis, it will show a green light and display the safe
operation angle on an HMI. If it is in a hazard operation angle in the Y Axis, it will sound an alarm and
show the hazard angle on an HMI.

(ARGEE Setup)
0 + |Program Variables
Mame Type
1 Conversion Convert v
2 Status Status_Check ¥
1 + |Alias Variables
Name 10 Point
a X_Degree Value 10_Slet1_Input_Input_value_2
1 |Y_Degree_ Value 10_Slot1_Input_Input_value_0
2 Light 10_Slot2_Output_Output_value_0
3 Alarm 10_Slot2_Output_Output_value_4
3 + |Eunction Block : Convert Regular v
Name Type Segment
0 [X_Angle Number v | VARIABLE -
1 |Y_Angle Mumber v | VARIABLE
Add Element |
4+ |M: Status_Check Regular ¥ | (hidden)
[+ Task - MainTask
Help: Convert()
o |call —
Conversion()
Help: Status_Check()
1 [call =
Status()
[+ Function Block - Convert()
Destination: X_Angle
0 | Assignment) = - -
Expression: ({16300- X_Degree_Value)/ 181)
Destination: _Angle
7| Assignment) = . .
Expression: ((16300- Y_Degree Value)' 181)

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

169

[1 Function Block - Status_Check()

0=+ | |:(X_Degr'ee_\falue = @) d
Destination: Light
oo Assignment
Expression: 1
1+ | |:(X_Degr'ee_‘ufalue > 8) J
Destination: Light
10 Assignment
Expression: 0
2+ K |:(‘|‘_Degr‘ee_\falue< 8200) /J
Destination: Alarm
20 Assignment
Expression: 1
3+ [IF |:(‘|‘_Degr'ee_\falue > B208) d
Destination: Alarm
30 Assignment
Expression:
[+ HMI Screens
0+ |HMISereen [Inclinometer Readout /J
0.0 x Section |'_In(11'nometer- Data A
Title: Alarm
Variable: valid_range(Conversion.Y_Angle
Display Number L
0.0 With Valid Range Units: Degrees
Min Valid Value: -5
Max Valid Value: 45
Title: Light
Variable: valid_range(Conversion. X_Angle
Display Number .
0.0. With Valid Range Units: Degrees
Min Valid Value: 30
Max Valid Value: 90
(ARGEE HMI)
Screens

Inlcinometer Readout
Inclinometer

Inlcinometer Data

AlInclinometer
Light 90 Degrees

170

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Explaining the example: The user wrote the code to monitor the angle of the boom in both the X and Y
axis. The angle of the boom in the Y axis is sounding an Alarm while the angle in the X axis is appropriate

for operation.

12.7.1 Working with Encoders

If a user wants to use an encoder to monitor rotary positioning, and display the angle on an HMI, they no
longer need a PLC. ARGEE has the ability to apply logic and math to the digital signals of an encoder.

Example of Working with Encoders:

(ARGEE Setup)
0 + |Program Variables
Name Type
1 |Position Number v
2 Degrees Nurmber v
3 Positioin_fxn position_Calc ¥
1 = [Alias Variables
Name 10 Point
0 Position_Value 10_Slot1_Input_ REG_RD_DATA
1 Gate_Function 10_Slot1_Output_Gate
3+ |Function Block : position_Calc Task v

Name | Tvpe |

Segment

Add Element)

ﬂ NOTE
The user will have to be in ARGEE PRO Advanced Mode to unlock multitasking. The
position_Calc function block will be running as a separate task.

[+ Task - MainTask

Destination: Gate Function
0 | Assignment =
Expression: 1

Destination: Position
Assignment

Expression: (Position_Value - (4065*(Position_value/4065)))

Destination: Degrees

[}

Assignment

Expression: ((((1000*Position)/4065)*360)/10000)

171

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

[+ HMI Screens

0+ |HMIScreen [Encoder p
0.0 + Section |:Encoder' Information /J
Title: Position Value
Display Number/ N . -
0.0.0 State/String Variable: Position
Units:
Title: Degree Value
5 Display Number/ N .
0.0. State/String Variable: Degrees
Units: Degrees

(ARGEE HMI)

Screens

[Encoder

Encoder

Encoder Information
Position Value 2330
Degree Value 206 Degrees

Explaining the example: The user is trying to get an input from a conventional incremental encoder. By
normalizing the output signal, the user can display the process data and the associated angle of the
encoder on an HMI.

ﬂ -
Download the device user manual at www.turck.com to learn more about encoder settings.

12.7.2 Working with State Variables

State Variables are helpful in keeping track of the signal as it steps through the code. Before the user
creates State Variables, it is a good idea to create a State Machine.

12.7.2.1 State Machine

A state machine is drawing on a piece of paper that shows how the signal transitions from one state to
another.

172

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

http://www.turck.com/

Example of a State Machine:

The user wants to use their ARGEE block to create a Traffic Cop. A Traffic Cop is a device that merges
two conveyer belts together without causing a box collision. The first thing the user does is gets out a
piece of paper and draws up a state machine.

Event: Sensor 1 is true.

Event: Sensor 2 is false ~ OR & Sensor 2 is true.

y

Condition: Belt 2 is off.

Event: Sensor 1 is false.
& Sensor 2 is true.

Start Event: Nothing

Condition: Device powers up. ' g Condition: Belt 2 is on.

Action: Belt 1 turns on. Action: Belt 2 turns off. Action: Belt 2 turns on.

Sensor 1
Action: Belt 2 turns off.

Explaining the State Machine: All the States are in light blue boxes. All the Events occur on the arrows.
All Actions are in dark blue ovals.

12.7.2.2 State Variables

Example of a State Variables:
(ARGEE Setup)

The user is satisfied with the Traffic Cop State Machine. The user now creates Program and State

Variables.
0 + | Program Variables 3 + | States
Name | Type Name
1.0 [INIT: Start_Up 0 [Start_Up
1 |state State/Enum v 1 |Belt_2_off
2 |Belt_2_On

1+ [Alias Variables

Name 10 Point
a Sensor_1 10_Basic_Input_Input_value_0
1 Sensor_2 10 _Basic_Input_Input_value_1
2 Belt_1 10_Basic_Output_Output_value_2
3 Belt_2 10_Basic_Output_Output_value_3

ﬂ o
Program Variable “State” is initialized to Start-up.

173

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

State = 5tart_Up P

Event: Sensor 1is true.

Destination: Belt_1 prene st O T concor 2 e
Expression: 1 i

Destination: Belt 2 |
Expression: 0

Destination: State |
Expression: Belt 2 Off |

Add Block)

|-
I+

(State = Belt_2 _0Off) & (Sensor_2 = 8) y

Destination: Belt 2 L ST
Expression: 0

Add Block)

Event: Nothing

Signal Path
(State = Belt_2 Off) & (Sensor_1 = @) & (Sensor_2 = 1)

Destination: Belt 2 |
Expression: 1

Destination: State
Expression: Belt 2 On

I
1+

Add Block)

(%]
1+

(State = Belt_2 On) & (((Sensor_1 = 1) & (Sensor_2 = 1)) | (Sensor_2 = 8)) .

Event: Sensor 2isfalse O LVent Sensor1is true.

Destination: Belt_2 e,

Expression: 0

Destination: State
Expression: Belt_2 Off

Add Block)

Event: Sensor Lis fase.
& Sensor 2is true.

Action: Action: Balt 2 twms on.

ignal Path

Explaining the example: When the device is powered up, Belt 1 is turned on and Belt 2 is turned off. If
Sensor 2 goes true (or a box shows up on Belt 2), ARGEE will check and see if Sensor 1 is true (or if a
box is on Belt 1). If Sensor 1 is true then Belt 2 stays off. If Sensor 1 is false, Belt 2 turns on and clears the
box on Belt 2.

This same state machine can be written with Function Blocks and If statements:

(ARGEE Setup)

174

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T+1 800 544 7769 | F +1 763 553 0708 | www.turck.com

0 + |Program Variables
Mame Type
1 (Belt_1_On Run_Belt_1 v
2 |Belt_ 2 On Run Belt 2 v
3 = |Function Block: Run_Belt 1 Reqular ¥ | (hidden)
4 + |Function Block: Run_Belt 2 Regular ¥ | (hidden)
1 + [Alias Variables
Name 10 Point
1] Sensor_1 10 _Basic_Input_Input_value_0
1 Sensor_2 0 _Basic_Input_Input_value_1
2 Belt_1 0_Basic_Output_Cutput_value_2
3 Belt 2 10_Basic_Output_Output_value_3
[+ Task- MainTask
0 + | Condition sensor_2 = 8 /
0 cal Help: Run_Belt_1()
= : Belt_1_0On()
Call ¥ | AddBlock |
1 + | Condition [(S-P_nsor‘_l = 1) & (Sensor_2 = 1) J
. cal Help: Run_Belt_1()
— 3 Belt_1_On()
Call ¥ | AddBlock |
2 + | Condition [(S-P_nsor‘_l = 8) & (Sensor_2 = 1) J
- cal Help: Run_Belt_2()
= 3 Belt_2_On()
Call ¥ | Add Block '

175

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

|+ Function Block - Run_Belt_1()

Destination: Belt_1 l
Expression: 1 J

=]

Destination: Belt_2 l
Expression: [J

Assignment ¥ | Add Block J

|

|£ Function Block - Run_Belt_2()

Destination: Belt_1 l
Expression: [} J

=

Destination: Belt_2 l
Expression: 1 J

Assignment ¥ | Add Block J

o=t

Explaining the example: If Sensor_1 is true or false and Sensor_2 is false, turn on Belt_1 and turn off
Belt_2. If both sensors are true, turn on Belt_1 and turn off Belt_2. If Sensor_1 is false and Senor_2 is
true, Turn off Belt_1 and turn on Belt_2.

176

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.7.3 Working with User-Defined Data Types

A User-Defined Data Type (UDT) is a function block which contains variables but no code. A user would

create a UDT if they were dealing with multiple objects with multiple properties.

Example of User-Defined Data Types:

Suppose the user has 2 cells, and each cell has 2 properties: temperature and flow. This is best illustrated

as a matrix:
COLUMNS
TEMPERATURE FLOW
CELLA Temperature of Cell 1 Flow of Cell 1
(Element 0)
ROWS
CELL 2
(Element 1) Temperature of Cell 2 Flow of Cell 2

To express this in ARGEE, the user will create a Function Block with variables (the columns), and then
create an array of this Function Block (the rows). No code goes into the Function Block; its only purpose is

to contain variables.

(ARGEE Setup)

3 + |Function Block : Cell Definition

Mame Type Segment
4 |Temperature Mumber v | VARIABLE -
1 Flow Mumber v [WVARIABLE v
0 + | Program Variables
Name | Type
of Array Elements: 2 {Clear field to disable array)
1 |cel | Cell_Definition v

+ Function Block - Cell_Definition()

Condition ¥ | AddBlock |

ﬂ .
If the user wanted to add more rows to this matrix, he would increase the size of the array. If the

user wanted to add more columns, he would create more Function Block variables.

177

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.7.3.1 Referencing Internal Function Block Variables

Press Ctrl—q, select the desired variable, and then fill in the array element number (between the brackets).

ﬂ NOTE

Cell number = element number+1, this is because array numbering starts at element O.

Global: Cell[]

(Cell Definition) []
PLC_CONMECTED {Mumber) o
PROG_CYCLE_TIME (Number)

<- Temperature

+ Task-MainTask

0+ |Condiion [true P

Destination: |Cel|[]. Flow |
00 Assignment

Expression: |O_Slot1_Input_Input_value 0

[+ Task - MainTask

0+ |Condifion [true P

Destination: |Cell[i].Flow |

Expression: |0_Slot1_Input_Input_value 0

0.0 Assignment

Explaining the example: Input 0 is stored in the variable Cell[0].Flow (Row 1, Column 2).

178

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.7.3.2 User-Defined Data Types as Arguments to other Function Blocks

(ARGEE Setup)
0 = | Program Variables
Name Type
1 convert_temp IOL_Temp_Conversion ¥
2 instance_of Fleat UDT Float_ UDT v
3 + | Function Block : Float_UDT Regular ¥
Name Type Segment
0 temperature_in_celsius Fleating v |VARIABLE -
4 = |Eunction Block : 10L_Temp_Conversion Regular ¥
Name Type Segment
0 |OL_Raw_Value Floating v | ARGUMENT +
1 storage_location Float_ UDT ¥ | ARGUMENT v

Task - MainTask

|+

Call

Help: IOL_Temp_Conversion(ICL_Raw_“alue,storage_location)

=

convert_temp(2147 instance_of Float_UDT)

Function Block - 10L_Temp_Conversion{lOL_Raw_Value,storage_location)

1+

Destination: storage_location temperature_in_celsius
Expression: ((IOL_Raw_“alue - 5120.0)*550.0/(60415-5120))-50

 [)

Assignment

(ARGEE Debug Screen)

Runtime Status

L TRACE

PROG CYCLE TIME : 5

PLC CONMNECTED: O

= L CONVERT_TEMP{IOL_TEMP_CONVERSION)
IOL RAW VBLUE : 2147

= |l - MainTask

= L INSTANCE_OF_FLOAT_UDT(FLOAT_UDT)

TEMPERATURE IM CELSIUS :-79.5713382445280

Explaining the example: The user wants to convert raw data from their 10-Link temperature sensor to
degrees Celsius, and store it as a variable inside a user-defined data type (UDT). They pass a raw value and
the name of their UDT into their temperature conversion Function Block, which converts the value and stores
the result in the temperature_in_celsius variable of the specified UDT. If the raw value is 2147, the
temperature in Celsius is -79.57 degrees.

179

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.7.4 Working with Hex Values

ARGEE can easily convert any value to hex. For example: if the user types “Hex(12),” then the value “c”
will be returned.

Example of Working with Hex Values:

(ARGEE Setup)

+ Keyboard shortcuts (hidden)

[z Task-MainTask

0 + |Program Variables 0 + | Condition [submit /,]
Name Type
1 Submit Number v : Destination: Submit
2 |Decimal Value Number M oo CEEEET Expression:
Add Variable |

Assignment ¥ | Add Block

[1 + [Alias Variables (hidder)| Add Condition)

Function Block v | Add

+ HMI Screens
0+ |HMIScreen [Convert Decimal to Hex J
00 + Section [conver-tar /,]
Title: Enter Decimal Value
0.00 Enter Number/String Variable: Decimal_Value
Units:
k Title: Hex Value
0.0.1 g:zgm'::;mm" Variable: Hex(Decimal_Value)
Units:
Title: Submit
0.02
Variable: Submit
(HMI View)

Convert Decimal to Hex

Converter
Enter Decimal Value 2452345
Hex Value 00256b 79

[Submit[}

Explaining the example: The user created a decimal to hex converter. If the user enters a decimal value
into the Enter Decimal Value text box and clicks Submit, the hex value will show in the Hex Value display
field.

180

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

12.7.5 Advanced Bitwise Operations — Bit Masking

12.7.5.1 What are Bitwise Operations?

A bitwise operation is a Boolean operation that compares variables’ bits against each other, instead of
comparing the variables’ values. ARGEE has bitwise OR, AND, NOR, and NAND, though AND is the only

operation with a practical use, which is bit masking.
12.7.5.2 What is Bit Masking?

Suppose you have an 10-Link laser distance sensor that outputs one word of process data; the first 15 bits
are dedicated to distance data, and the last 3 bits are status bits. To use the distance as a humber in your
ARGEE code, you want to ignore the status bits, and just work with the distance data, represented as a
15-bit integer. That act of “covering up” unwanted bits is called bit masking.

12.7.5.3 Example of Bit Masking

(ARGEE Setup)

0 = |Program Variables N -
Name [Type ; _ Destination: distance

TR 0 | Assignment i

1.0 185535 Expression: |OL word 0 & 0x1FFF

1 IOL_word_0 Number v = =

2 distance MNumber v

(ARGEE Debug Screen)

Runtime Status

J} TRACE
PROG CYCLE TIME : 2

PLC CONNECTED: O
DISTANCE - 8191k
IOL WORD 0 65535

Decimal Hex Binary

8191 Ox1FFF 0001 1111 1111 1111

Explaining the example: IOL_word_0 is compared bit-by-bit against 0xX1FFF. Whenever both bits of the
numbers are TRUE, a 1 is assigned to that bit position in distance. If either bit is FALSE, a 0 is assigned to
that bit position in distance. The result is that the last 3 bits of IOL_word_0 are ignored.

12.7.6 Nesting Function Blocks

ARGEE 3 has the capability to nest Function Blocks. The user will nest Function Blocks if the user wants
a function block to call another function block.

181

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

C T, T 1= R—_ G
Run Debug Print 10 Config Project SetTitle About
Project Title: TBEN-51-8DXP (192.168.1.12) V3.2.3.5
Variables and Definitions ARGEE Program
+ Keyboard shortcuts (hidden)
_ + Task-MainTask
0 + | Program Variables
Name I Type . cal Help: Function_Block_1()
1 |Main_Function | Function_Block_1 ¥ B Main_Function()
Add Variable
J Call Y | Add Block '
[1 = TAlias Variables (hidden)] .
[+ Function Block - Function_Bleck_1{)
Help: Function_Block_2()
o Call F - 30
3 + |Function Block : Function_Block_1 Regular ¥ unction_2()
‘ Name | Type | Segment Call ¥ | _Add Block)
0 [Function 2 |[Function_Block_2 ¥ | VARIABLE _+
Add Element)
= + Function Block - Function_Bleck_2()
4 + | Function Block : Function_Block_2 Regular ¥
0 + |Condition [true ,I
Name | Type Segment
Add Element J Destination: [0_Basic_Input_Input_value_0
0.0 Assignment
Expression: [0_Basic_Input_Input_value_0
Function Block v | Add]

Explaining the example: The MainTask calls Main_Function which is Function_Block_1.
Function_Block_1 then calls Function_Block_2.

ﬂ NOTE
To get a list of Local Variables for the Function Block, press Ctrl-L.

12.7.7 Advanced HMI Example — Tank monitoring with graphics

ARGEE 3 allows the user to code an HMI with static images and multi state graphics that respond to your
code. The user is trying to monitor a tank with an ultrasonic sensor. The user then wants to display the
status of the tank level on an HMI with representative pictures and a status color of each level.

(ARGEE Setup)
0 + |Program Variables
Name Type
0 |Tank_Monitoring Tank_Status v
1 + [Alias Variables
Name 10 Point
0 |Tank_Sensor 10_Slot1_Input_Input_data word_0
182

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

4 + |States
Name

a High
1 Crit_High
2 OK
3 Low
4 | Crit_Low

3 + |Function Block : Tank_Status Regular ¥

Name Type Segment
a Tank_State State/lEnum ¥ | VARIABLE

[+ Task- MainTask

o [cal

Help: Tank_Status()
Tank_Monitoring()

+ Function Block - Tank_ Status()

0o+ |If [Tank_Sensor‘ < 1988 & (1481 < Tank_Sensor) 4
Destination: Tank_State
0.0 | Assignment =
Expression: Crit_Low
1+ | [Tank_Sensor < 1480 & (1081 < Tank_Sensor) 4'
Destination: Tank_State
1.0 Assignment =
Expression: Low
2+ |If [Tank_Sensor‘ < 1@8@ & (801 < Tank_Sensor) 4
Destination: Tank_State
20 | Assignment =
Expression: 0K
a2+ |IF [Tank_Sensor < B@@ & (481 < Tank_Sensor) 4'
Destination: Tank_State
30 Assignment =
Expression: High
4+ |IF [Tank_Sensor < 488 & (@ < Tank_Sensor) 4|
Destination: Tank_State
4.0 | Assignment =
Expression: Crit_High

183

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

ﬂ NOTE
Your sensor range might be different, or need to be “taught” its range. Look at the user manual for
your sensors on www.turck.com

Now let’s configure the HMI:

The plan is to place a logo in the top right corner and then have a central column with images that display
tank level with a color based status background. Below this image we will display the tank state with the
same color based status background. It's a good idea to sketch out what you're trying to accomplish so
that you can code against a design. See Chapter 9: ARGEEE HMI for more details.

First, we'll add an HMI Image Group and upload our images.

|: J;'_UI’ Sereens
0+ HEMI Image
bz 1g
VarName:Turck Logo
VarName: Tank Crit_High
) - i
VarName:Tank Crit_Low
0.2 HMI Image D
VarName:Tank High
_. - i
VarName:Tank Low
04 HMI Image Q
VarName:Tank OK
) - Q

184

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

http://www.turck.com/

ﬂ NOTE
The user can upload any image. Keep file size below 20kb.

Now let’s add a grid screen.

HMI Grid Help: SCREEN_PROP(Title width_m_percent of screen.enable rounded_edges.background_color)
Screen [SCREEN_PROP("Tank Status",9@,true,"#FBFBF8")

Help: ROW_PROP(background_color)
[ROW_PROP (" transparent”)

1
t=1

+ Grid Row

Help: CELL_PROP(colmm_span border_stvle)

200 + Grid Cell :
[CELL_PROP(1,@)

Help: STATIC_GRAPHICS(mage file variable background celer.default_zocm)
|:STATIC_GRAPHICS("Turck Loge","transparent”,180)

Add Element |

Help: CELL_PROP(colmmn_span border_style)
(cELL_proP(4,8)

=
=]
|

Gnid Cell

Our first row is just to display the logo in the top left of the screen. We added two Grid Cells one that
spans 1/5 of the screen and the other 4/5 screen. We then added a Grid Element to the first Grid Cell and
used the STATIC_GRAPHICS function to place our logo, using its variable name.

ﬂ NOTE
HMI functions are available by hitting Ctrl-f, and image file variables are available by hitting Ctrl-i.

Our second row is empty; it will be used as a spacer.

Help: ROW _PROP(background_celor)

21 + Grid Fow p
_ |[ROW_PROP("transparent™)

Help: CELL_PROP(columm_span berder_style)

210+ Grid Cell p
[CELL_PROP(1,8)

Our third row will have three cells, and the middle cell will have the Grid Elements Multi State Display

Graphics and Multi State Display Strings. Both of these functions will use different background colors for
each state.

185

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Help: ROW _PROP(backgroimd_color)
22+ Grid Row
[ROH_PRDP("transparent”)
Help: CELL_PROP(cohumn_span border_style)
220 + Grid Cell
[cELL_PROP(1,8)
Add Element
Help: CELL_PROP(column_span border_style)
221+ Grid Cell
[CELL_PROP(1,8)

Help: MULTI_STATE DISPLAY GRAPHICS(Titlevar.title sizetitle colortitle background color.mage zoom level valuel..
MULTI_STATE_DISPLAY_GRAPHICS("",Tank_Monitoring.Tank_State,3, rhlat:k“_, "transpare
nt",25,

1310 Crit_High,"Tank Crit_High", “red",
— High, "Tank High", "orange",
ok, “"Tank OK", "lightgreen",
Low, "Tank Low", "orange",
Crit_Low, "Tank Crit_Low", "red")
Help: MULTI_STATE_DISPLAY_STRING(Title var size fitle_colortitle_background_color, vahiel)
MULTI_STATE_DISPLAY_STRING("",Tank_Monitoring.Tank_state,3, “black” s "transparent
»
1311 Crit_High, "Tank Level Critically High", "white", "red",
— High, "Tank Level High™, "black™, "orange",
0K, "Tank Level Optimal", "black", "lightgreen",
Low, "Tank Level Low", "black"”, "orange”,
Crit_Low, “"Tank Level Critically Low", "white”, "red™)
Add Element
Help: CELL_PROP(column_span border_style)
222 + Grid Cell
[cELL_PROP(1,8)

The last row will be empty and used as a spacer.

Help: ROW_PROP(backeromnd_color)

23+ Grid Row
[_RW_PRDP("transparent™)

Help: CELL_PROP(cohmm_span border_style)
[CELL_PROP(1,0)

230+ Gnd Cell

186

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

(HMI View)

Screens

Tank Level Optimal

Screens

Tank Level Critically High

Explaining the example: The user wrote some code to monitor the tank level, and then configured an
HMI using custom graphics to display the state of the tank level. As the tank level changes, the HMI
changes in response to the tank state.

187

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

13 Appendix Il — Libraries

13.1 MISC

Import the MISC library.
13.1.1 MISC_wait_ms

Function: When MISC_wait_ms is called it halts the task execution for the designated amount of time.

The imported MISC_wait_ms function block should look like the image bellow.

1 + |Function Block : MISC_wait_ms Reqgular »
Name Type Segment
a wait_time_in_ms Mumber ¥ |ARGUMENT v
1 timer Timer/Counter ¥ ||VARIABLE v
Program Variables: A MISC_wait_ms program variable is needed to call the function.
0 = | Program Variables
Hame Type
1 Wait MISC_wait_ms v
2 Time Mumber v

How to Call: The Call needs a wait time in ms argument. This can be a static number or a number program
variable.

+ Task - MainTask

Help: MISC_wait_ms(wait_time_in_ms)

0 | cal
= | Wait(Time)

13.1.2 MISC_array_to_string

Function: When MISC_array_to_string is called the input array will be written into the output string for as
many bytes that have been designated in the argument of the call.

The imported MISC_array_to_string has Byte, String, and Number arguments.

2= |Functiﬂn Block : MISC_array_to_string Regular -
| Name | Type | Segment
l# of &rray Elements: aMM_art (Clear fisdd fo disable array)
0 |amay_input | Byte v | ARGUMENT v
& of Aray Elements: @IT_arc (Clear field fo disable array)
1 string_output Sitring r | ARGUMENT
2 number_oi_byies Mumber r | ARGUMENT
3 i Mumber r |VARIABLE v
188

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Program Variables: To call MISC_array_to_string a MISC_array_to_string variable, a string array variable, a
byte variable, and a number variable are needed.

0 = [Program Variables
Name Type
1 array_fo_siring MISC_array_to_string r
of Argy Elements: 32 {Clear field fo disable array)
2 |input_amay |Byte v
g of Arrgy Elements: 32 {Clear field fo disable array)
3 output_string | Sining r

How to Call: The call needs a number variable that is the array being input, a string variable that will hold the
outputted string, and then a number that is the amount of bytes the array is long.

[+ Task - MainTask

Call

Help: MISC_amay_to_string(array_input, string_output, number_of_bytes)
array_to_string(Input_array, output_sftring,32)

13.1.3 MISC_sort

Function: When MISC_sort is called the output number array is filled with the data of the input array in
order of increasing value, with length denoted by number_of_elements.

The sort function block has 2 number arrays (one for the input and one for the output), and a number that
represents the length of the input array as arguments.

3+ |Function Block : MISC_sort Reqular -
| Name | Type | Segment
l# of Amray Elements: @rr_am (Clear fieid fo disable array)
a array_input | Mumber v | ARGUMENT »
of Aray Elements: AMT_art (Clear field fo disabls array)
1 array_output Mumber ¥ | ARGLUMENT =
2 number_of_elements Mumber ¥ | ARGUMEMNT =
3 min_pos Mumber v |VARIABLE
4 i Mumber r |VARIABLE
5 i Mumber ¥ |VARIABLE ¥
[tmp Number r |VARIABLE

Program Variables: To call sort a MISC_sort variable, an input number array that holds the values that are
being sorted, an output number array that will hold the sorted array, and the length of the input array are

needed.
0 = |Program Variables

MName Type

1 Sort_ MISC_sort v
@ of Array Elements: 32 (Clear figld fo disabls array)

2 Input_array | Mumber r
@ of Arrgy Elements: 32 (Clear figld o disabis array)

3 output_array | Mumber r

189

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

How to Call: The call needs a number array for the input, a number array to hold the output, and number to
represent the length of the input array.

[+ Task - MainTask

Help: MISC_sortiarray_input array_output,number_of_slements)

g = Sort_(Input_array,output_array, 32)

13.1.4 MISC filter_sample_into_array

Function: When MISC_filter_sample_into_array is called it puts the current input sample value into the
sequential_array and the filtered_array. The sequential_array is an array that holds the input sample
values in the order they were input, and the filtered_array is an array that holds the input sample values in
order of increasing size. filtered_array and sequential_array have lengths of 5, and all data input after the
5% will overwrite the first data values stored.

*To change the array length the user will need to alter the code in the function block change the 5s
highlighted bellow to the desired length, and change the # of Array Elements of filtered_arr and seq_arr in
the Function Blocks variables to the desired length.

Destination: curr elem
1 Assignment _ =
Expression: (curr_elem+1)3
2+ [[ma)t:_Elt—:-m1 5|

The MISC _filter_sample_into_array function block only has a single number argument.

4 + |Eunction Block : MISC_filter_sample_into_ | Regular v
Name Type Segment
0 sample Mumber ¥ | ARGUMENT »
1 sort MISC_sort ¥ |VARIABLE v
of Amray Elements: 5 {Clear fieid fo disable array)
2 filtlered_array Mumber v |VARIABLE
of Aray Elements: 5 {Clear fieid o dizabls array)
3 sequential_array Mumber v |VARIABLE
4 max_elem Mumber ¥ |VARIABLE
5 curr_elem Mumber ¥ |VARIABLE ¥
B ind Mumber v |VARIABLE ¥
7 filtered_sample Mumber v | VARIABLE

Program Variables: The needed variables to filter sample are a MISC_filter_sample_into_array variable to
call, and a number variable to represent the sample values being input.

0 = | Program Variables
Name Type
1 Filter filter_sample v
2 Samp Mumber v

190

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

How to Call: For MISC _filter_sample_into_array to be called successfully it cannot be continuously called, so
it needs to be in a condition block. If it is called continuously the filtered array values will be filled with repeats
of the current sample value, and not populated with 5 unique sample values.

+ Task - MainTask

0 = |Condiion |

Help: filter_sample(samplga)

0.0 Call
= . Filter(Samp)

13.1.5 MISC reset_filter
Function: The MISC_reset_filter when called resets the MISC_filter_sample_into_array so that the next
sample value is put into the arrays first data slot. It does not clear the MISC_filter_sample_into_array

arrays, just resets where the next sample data goes in the array to the beginning.

The function block should look as it does bellow.

5 + |Function Block ; MISC_reset_filter Regular
Name Type Segment
a filter_being_reset MISC_filter_sample_into_array * | ARGUMENT »

Program Variables: To call MISC_reset_filter a MISC_reset _filter variable is needed, and a
MISC_filter_sample_into_array variable is needed for the argument.

0 = [Program Variables
Name Type
1 Reset MISC_reset_filter r
p Filter MISC_filter_sample_into_array ¥

How to Call: When calling MISC_reset_filter the argument needs to be a MISC_filter_sample_into_array
variable.

|+ Task - MainTask

Help: MIZC_reset_filterfilter_being_reset)

LI -7 Reset(Filter)

13.1.6 MISC_NUMBER_st
Function: The function of MISC_NUMBER_st is to pass a number to a function block.

The function block should look as it does bellow, with no arguments.
7 + |FEunction Block : MISC_NUMBER_st Fegular v

Mame Type Segment
1] number Mumber v |WVARIABLE

Program Variables: The only variable needed is a MISC_NUMBER_st variable.

0 = |Program Variables
Name Type

My_number MISC_MNUMBER_st T

191

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

How to Call: This function block is not really called instead a number is assigned to the variable in the
function block as shown below.

[+ Task - MainTask

: Destination: My_number number
] Assignment
Expression: 100

13.1.7 MISC_copy_byte to_array

Function: MISC_copy_byte_to_array copies the data from a source byte array to a destination byte array,
and the data from the source and to the destination can both be offset.

The Function Block has source and destination Byte array arguments, source and destination offset number
arguments, and an array length number argument.

1= |Fun|::ti0n Block : MISC_copy_byte_to_amra |(Regular v
[Name [Type [Segment
l# of Array Elements: @IT_arC (Clear field fo disable array)
1] source |Byte T |AHGUMENT T
& of Array Elements: arr_arg (Clear fieid fo disable array)
1 destination Byte ¥ | ARGLUMENT »
2 offset_source Mumber ¥ | ARGUMENT »
3 offset_destination Mumber ¥ | ARGUMENT »
4 length Mumber ¥ | ARGUMENT »
5 ind_src Mumber v |VARIABLE v
B ind_dst Mumber v |VARIABLE v

Program Variables: The program variables needed are the MISC_copy_byte_to_array to call, the length of
the arrays (in this case 32), and source and destination arrays. Offset values are also used but they do not
need to be variables.

0 = |Program Variables
Name Type
1 Copy MISC_copy_byte to_array A
g of Array Elements: 32 (Clear figld to disabls srray)
2 =1 | Byte T
@ of Array Elements: 32 (Clear figld to disabls srray)
3 |dst | Byte v

How to Call: To call MISC_copy_byte_to_array the user needs the source array, the destination array, a
source offset number, a destination offset number, and number to represent the length of the arrays.

[+ Task - MainTask

Help: MISC_copy_byte to amay({zorce destination,offset_sorce offest_destinafion length)

0 Call Copy(src,dst.0,0,32)

192

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

13.1.8 Float_to_String

Function: Float_to_String takes an input float value and puts it into a string.

The Function Block should look as it does bellow.

1 + |Function Block : float to string

Name

Type

Segment

=

Input_float

Floating

¥ || ARGUMENT r

a

Mumber of Decimal Positions Mumber

¥ | ARGUMENT »

of Array Elements: arr_arc (Clear field to disable array)

2 Output stnng String v | ARGUMENT =
3 fit1 Floating v || VARIABLE v
4 int1 Mumber v [[VARIABLE -
g flt2 Floating v | VARIABLE -
5] int2 Mumber v || VARIABLE
7 pwWr Mumber v || VARIABLE
8 [Mumber v || VARIABLE v

of Array Elements: 10

(Clear field to disable array)

g temp_string String T | VARIABLE
10 |megative_num Mumber T | VARIABLE
11 |conv_arg float Floating T | VARIABLE

Add Element)

Program Variables: To Call Float_to_String a Float_to_String variable is needed, a float variable, a string,

and a number variable.

0 = | Program Variables

Name

Type

Float_String

float to_string ¥

Float

Floating

T

of Array Elements: 32

|wd

String_

(Clear field to disable array)

String

T

[E=%

Decimal_Positions

Mumber

T

How to Call: To call Float_to_String the following arguments must be satisfied; a float variable that holds the
float being input, the number of decimal places the float variable has, and the string that the is being output

with the value of the float variable.

+ Task - MainTask

0 |cal

Help: float_to_string{lnput_float, Number_of_Decimal_Positicns, Qutput_string)

Float_String{Float_Decimal_Positions, String_)

193

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

13.2 Technology
13.2.1 BLCEN_RFIDS_Routines

For BLCEN-RFIDS devices to read or write the transceiver needs to be turned on. This is done as shown
below.

+ Task - MainTask

Destination: 10_Slot1_Cutput XCWVR_0

=

Assignment
Expression: 1

13.2.2 BLCEN_RFIDS_Read

Function: BLCEN_RFIDS_Read when called waits for the next tag to be presented to read, and that data
is held in the input read data.

The Function Block should look as it does bellow.

1 + |Eunction Block : BLCEN_RFIDS Read Regular *
Name Type Segment

] slot Mumber ¥ || ARGUMENT ~»
1 channel Mumber ¥ || ARGUMENT ~»
2 offset Mumber ¥ || ARGUMENT ~»

of Array Elements: arr_arc (Clear field to disable array)
3 res data Byte v || ARGUMENT »
4 num_bytes to read Mumber T || ARGUMENT »
g CUIT_pos Mumber T |[WVARIABLE

of Array Elements: 2 (Clear field to disable array)
g be addr_arr Byte v ||VARIABLE
7 to_copy Mumber v ||VARIABLE
a result Mumber ¥ ||VARIABLE -

Program Variables: To call BLCEN_RFIDS_Read a BLCEN_RFIDS_Read variable, and a byte array are
needed.
0 = | Program Variables
Name Type

1 Read BLCEM RFIDS Read v

of Array Elements: & (Clear field to disable array)
2 |Reset_data Byte v

How to Call: When calling BLCEN_RFIDS_Read the following arguments need to be fulfilled; what slot of the
BLCEN has the 2RFID channels, which channel is being used, how much the data being read should be
offset, the reset data byte array, and the number of bytes that are being read from the tag.

+ Task - MainTask

Help: BLCEMN_RFIDS_Readi(slot,channel offset res_data,num_bytes_to_read)

0 Call
= . Read(1.0.0,Reset_data,3)

194

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

13.2.3 BLCEN_RFIDS_Write

Function: When BLCEN_RFIDS_Write is called the data from an outp_data is written onto the next tag

that is put into the transvers field.

The Function Block should look as it does bellow.

0 = | Program Variables
Name Type
1 Write BLCEM_RFIDS Write r
of Array Elements: 8 (Clear field to disable array)
2 Write Data Byte v

2 = |Function Block : BLCEN_RFIDS_ Write Regular ¥
Name Type Segment
] slot Mumber ¥ | ARGUMENT ~
i channel Mumber ¥ | ARGUMENT ~
2 offsat Number ¥ | ARGUMENT
of Array Elements: arr_arg (Clear field to disable array)
3 outp_data Byte ¥ || ARGUMENT
4 num_bytes to write Mumber v || ARGUMENT »
g CUIT_pos Mumber T ||YVARIABLE v
of Array Elements: 2 (Clear field to disable array)
g be addr_arr Byte ¥ |[VARIABLE v
7 to_copy Mumber v ||VARIABLE v
2 result Number ¥ ||VARIABLE -

Program Variables: To call BLCEN_RFIDS_Write a BLCEN_RFIDS_Write variable is needed, and a Byte
array that holds the data that is being written is needed.

How to Call: The arguments needed to call BLCEN_RFIDS_Write are, what slot of the BLCEN has the
2RFID channels, which channel is being used, how much the data being written should be offset onto the tag,
the data array that is being written onto the tag, and the number of bytes that are being written onto the tag.

|+ Task - MainTask

0 Call

Help: BLCEMN_RFIDS_Write(slot, channel offset outp_data, num_byies_to write)
Write(1,0,0, Write_Data,d)

195

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

13.2.4 TBEN_S2_RFID_READ

Function: TBEN_S2_RFIDS_READ when called waits for the next tag to be presented and reads it, and
that data is held in the input read data.

The Function Block should look as it does bellow.

1 + [(Function Block : TBEN_S2_RFID_READ Regular r
MName Type Segment
i) channel Mumber ARGUMENT v
1 offset Mumber ¥ | ARGUMENT »
2 length Mumber ¥ | ARGUMENT »
i of Array Elements: AIT_arC (Clear field fo disable array)

3 output_array Byte ARGUMENT
4 array_ofiset Mumber ARGUMENT v
5 array_ofiR Mumber ¥ [|VARIABLE
g ofiR Mumber ¥ |VARIABLE
T lenk Mumber ¥ [|VARIABLE v
E] ctrl_slot Number ¥ |VARIABLE v
g input_slot MNumber ¥ [[VARIABLE
10 lenl Mumber ¥ [|VARIABLE

are needed.
0 + |Program Variables
MName Type
1 Read TBEM_52_RFID_READ ¥
of Amray Elemeants: 32 (Clzar field fo disabls array)
2 |Reset | Byte v

Program Variables: To call TBEN_S2_RFIDS_READ a TBEN_S2_RFIDS_READ variable, and a byte array

How to Call: When calling TBEN_S2_RFIDS_READ the following arguments need to be fulfilled; which
channel is being used, how much the data being read should be offset, the number of bytes that are being
read from the tag, the reset data byte array, and how much the array data should be offset.

|+ Task - MainTask

0 |[can

Help: TBEN_S2_RFID_READ{channsl offzet length,output_array,amray_offzat)
Fead(1,0,8,Reset 0)

196

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

13.2.5 TBEN_S2_RFID_WRITE

Function: The function of the TBEN_S2_RFID_WRITE when called writes the data from a byte array is

written onto the next tag that is presented into the transceiver’s field.

The Function Block should look as it does bellow.

2 + |Eunction Block : TBEN_SZ_RFID_WRITE Fegular
Name Type Segment
1] channel Mumber ¥ | ARGUMENT
1 offset Mumber ¥ | ARGUMENT »
2 length Mumber ¥ | ARGUMENT »
of Array Elements: arT_arc (Clear field fo disable array)
3 source_array Byt ARGUMENT ¥
4 array_offsat Mumber ARGUMENT »
5 array_off Mumber ¥ ||VARIABLE
B offV Mumber ¥ ||WVARIABLE v
T len'W Number ¥ ||VARIABLE
a ctrl_slot MNumber ¥ [[WVARIABLE v
g output_slot Mumber ¥ [|VARIABLE
10 (lenl Number ¥ ||VARIABLE

0 + |Program Variables
Name Type
1 Write TBEN_S2_RFID_ WRITE ¥
g of Array Elements: 32 (Clear field fo disable array)
2 Write_Data Byte v

Program Variables: To call TBEN_S2_RFID_WRITE a TBEN_S2_RFID_WRITE variable is needed, and a
Byte array that holds the data that is being written is needed.

How to Call: The arguments needed to call TBEN_S2_RFID_WRITE are, which channel is being used, how
much the data being written should be offset onto the tag, the length of the array being written onto the tag,
the data array that is being written onto the tag, and how much the array data being written should be offset.

[+ Task - MainTask

0 |[can

Help: TBEN_S2_RFID_WRITE(channel, offset length source_array, armay_cfizet)
Write{1,0,8,Write_Data,0)

197

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

13.2.6 TBEN_IOL_AsyncRead

Function: When TBEN_IOLAsyncRead is called the parameter data from a chosen index and sub index
is read into the ds_tx_array and ds_rx_array.

The function block should look as it does bellow.

2 = |Eunction Block : TBEN_IOL_AsyncRead Regular »
MName Type Segment
] port_num Mumber ¥ | ARGUMENT »
1 index Mumber ¥ | ARGUMENT »
2 sub_index Mumber r | ARGUMENT
i of Array Elements: AIT_3rC (Clear field fo disable array)
3 reset_data Byte ¥ | ARGUMENT »
4 reset_data_length MNumber ¥ [[VARIABLE
of Amray Elements: 32 (Clezar field fo disabls array)
5 |ds_tx_amay | Byte v|[VARIABLE ¥
g of Amray Elements: 32 (Clear field fo disabls sray)
4 ds_r<_array Byte ¥ |VARIABLE
I reset Mumber ¥ |VARIABLE
3 read_reset Mumber ¥ [|VARIABLE v
g tmp Number ¥ |VARIABLE v
Program Variables: The variables needed to call TBEN_IOL_AsyncRead are a TBEN_IOL_AsyncRead
variable, and a byte array variable.
0 = |Program Variables
MName Type
1 Read TBEMN_IOL_AsyncRead ¥
of Amray Elements: 8 {Clear field fo dizabls array)
2 |Reset | Byte v

How to Call: To call TBEN_IOL_AsyncRead the following arguments need to be filled; the port that is being
used, the parameter index that the user is trying to read, the sub index that the user is trying to read, and a
reset byte array.

|+ Task - MainTask

Help: TBEN_IOL_AsyncRead(por_num index sub_index resel_data)

] Call Read(1,20,0,Resst)

198

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

13.2.7 TBEN_IOL_AsyncWrite

Function: When TBEN_IOL_AsyncWrite is called the data from a byte array is written into a chosen index

and sub index.

The function block should look as it does bellow.

3 + |Eunction Block : TBEN_IOL_AsyncWrite Regular
Name Type Segment
o port_num Mumber ¥ | ARGUMENT »
1 index Mumber ¥ | ARGUMENT »
2 sub_index Mumber ¥ | ARGUMENT
& of Array Elements: aIT_arC (Clear field fo disable array)
3 write_data Byte ARGUMENT »
4 write_data_length Mumber ARGUMENT =
5 index1 Mumber ¥ [|VARIABLE v
& of Array Elements: 32 (Clear field fo disable array)
& |ds_tx_amay | Byte v [VARIABLE v
of Amray Elements: 32 (Clezar field fo disabls array)
T ds_r<_array Byte WARIABLE
a reset MNumber YVARIABLE v
g read_reset Mumber ¥ [|VARIABLE
10 oot Mumber ¥ |VARIABLE
Program Variables: The only program variables needed are a TBEN_IOL_AsyncWrite variable, and a byte
array variable.
0 = |Program Variables
MName Type
1 Write TBEMN_IOL_AsynciWrite ¥
& of Aray Elements: 8 (Clear field ta dizabls array)
2 |Wwrite_ |Byte v

How to Call: To call TBEN_IOL_AsyncWrite the following arguments need to be satisfied, the port that is
being used, the parameter index that the user is trying to write into, the sub index that the user is trying to
write into, the byte array that is being written, and the length of the array being written.

[+ Task - MainTask

0 e Write(1,20,0,Write_8)

Help: TBEN_IOL_Async\Write{port_num,index sub_index write_data write_data_length)

199

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

TURCK sells its products through Authorized Distributors. These distributors provide our customers
with technical support, service and local stock. TURCK distributors are located nationwide —
Including all major metropolitan marketing areas
For Application Assistance or for the location of your nearest TURCK distributor, call:
1-800-544-7769

Specifications in this manual are subject to change without notice. TURCK also reserves the right to
make modifications and makes no guarantee of the accuracy of the information contained herein.

200

Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

	1 General Information
	1.1 About these instructions
	1.2 Explanation of symbols used
	1.3 Contents
	1.4 Feedback about these instructions
	1.5 Technical support

	2 Preface
	2.1 What is ARGEE 3?
	2.2 Features of ARGEE 3
	2.3 What are ARGEE’s advantages and limitations?
	2.4 What products support ARGEE?
	2.5 Who should use this manual?
	2.6 What is the purpose of this manual?

	3 Logging into ARGEE
	3.1 Opening the Environment
	3.2 Logging into the Program Mode
	3.3 Welcome to Flow Chart

	4 Flow Chart
	4.1 The Basics
	4.2 Condition
	4.3 Operations
	4.4 Actions
	4.5 Clean Empty Rungs
	4.6 Add Empty Rungs
	4.7 Delete All Rungs
	4.8 Timers
	4.9 Counters
	4.10 Internal Reg
	4.11 Flow Chart Menu Bar
	4.11.1 Run
	4.11.2 Debug (ARGEE Flow)
	4.11.3 Open/Save As
	4.11.4 New Project
	4.11.5 Convert to ARGEE PRO
	4.11.6 Set Title
	4.11.7 About
	4.11.8 Flowchart

	5 ARGEE PRO
	5.1 The Basics
	5.2 Variables and Expressions
	5.3 Condition
	5.4 Actions
	5.4.1 Assignment
	5.4.2 Coil
	5.4.3 Timer Start
	5.4.4 Timer On
	5.4.5 Timer Off
	5.4.6 Trace
	5.4.7 Comment
	5.4.8 Count Up
	5.4.9 Count Down
	5.4.10 Reset Counter
	5.4.11 Call
	5.4.12 How Actions respond to Conditions

	5.5 Program Variables
	5.5.1 Variable Name
	5.5.2 Variable Types
	5.5.3 Add Variable
	5.5.4 Program Variables Context Menu

	5.6 Alias Variables
	5.7 Main Task
	5.7.1 Adding Conditions to the Main Task
	5.7.2 Adding Actions to the Main Task
	5.7.3 Main Task Context Menu

	5.8 Function Blocks
	5.8.1 The Basics
	5.8.2 Function Block Options
	5.8.3 Function Block Segments
	5.8.4 Function Block Statements
	5.8.4.1 While
	5.8.4.2 For
	5.8.4.3 If
	5.8.4.4 Else If
	5.8.4.5 Else

	5.9 Libraries
	5.9.1 What is a Library?
	5.9.2 Creating a Library
	5.9.3 Importing a Library

	5.10 HMI Screens
	5.11 Keyboard Shortcuts
	5.11.1 List of Keyboard Shortcuts:

	5.12 ARGEE PRO Menu Bar
	5.12.1 Debug (ARGEE PRO)
	5.12.2 Print
	5.12.3 IO Config (I/O Configuration)
	5.12.4 HMI
	5.12.5 Project
	5.12.6 Edit Code
	5.12.7 Delete Project
	5.12.8 Run Without Source
	5.12.9 ARGEE PRO Advanced Mode

	6 ARGEE PRO Advanced Mode
	6.1 The Basics
	6.2 Function Block Types
	6.2.1 Regular
	6.2.2 Task (Multitasking)

	6.3 Wait Until

	7 Debugger
	7.1 Debugger Information
	7.1.1 Single Task
	7.1.2 Multiple Tasks
	7.1.3 Break Points
	7.1.4 Trace
	7.1.5 Order of Operation – Calls & Function Blocks

	7.2 Debug Menu Bar (ARGEE PRO)
	7.2.1 Halt
	7.2.2 Step
	7.2.3 Continue
	7.2.4 Modify Vars (Modify Variables)
	7.2.5 Finish Modifications

	8 ARGEE Simulation Mode
	8.1 Opening the Environment
	8.2 Logging into Simulation Mode
	8.3 Selecting Device to Simulate
	8.3.1 Flow Chart Simulation Mode
	8.3.2 Pro Simulation Mode

	9 ARGEE HMI
	9.1 The Basics
	9.2 HMI Screen
	9.2.1 Sections
	9.2.1.1 Display Number/State/String
	9.2.1.2 Display Number with Valid Range
	9.2.1.3 Enter Number/String
	9.2.1.4 Enter State
	9.2.1.5 Submit Action

	9.3 HMI Grid Screen
	9.3.1 HMI Grid Screen
	9.3.2 Grid Row
	9.3.3 Grid Cell
	9.3.4 Grid Element
	9.3.4.1 Display Value
	9.3.4.2 Enter Value
	9.3.4.3 Button
	9.3.4.4 Static Text
	9.3.4.5 Screen List
	9.3.4.6 Static Graphics
	9.3.4.7 Multi-State Display String
	9.3.4.8 Multi-State Display Graphics
	9.3.4.9 Dropdown List
	9.3.4.10 Display Value with Health
	9.3.4.11 Link

	9.4 HMI Image Group
	9.5 HMI Formatting Tips
	9.5.1 Cell Spacing in a HMI
	9.5.2 Row Spacing in a HMI

	10 PLC Connectivity
	10.1 Communicating with EtherNet/IP Master – RSLogix5000 / Studio5000
	10.2 Communicating with a PROFINET Master – SIMATIC STEP 7
	10.3 Communicating with a Modbus TCP/IP Master – Crimson 3
	10.4 Communicating with a Turck PLC or TX500 Series HMI – CODESYS 3
	10.4.1 EtherNet IP
	10.4.2 PROFINET
	10.4.3 Modbus TCP/IP

	11 Appendix I - Definitions
	11.1 Built-in Functions (Ctrl-f)
	11.2 Built-in Functions Menu
	11.2.1 Strings/Arrays
	11.2.1.1 String Length
	11.2.1.2 String Left
	11.2.1.3 String Right
	11.2.1.4 String Middle
	11.2.1.5 String Copy
	11.2.1.6 String Concatenate
	11.2.1.7 String Compare
	11.2.1.8 String to Integer
	11.2.1.8.1 String to Integer - Base 2 – Binary
	11.2.1.8.2 String to Integer - Base 8 – Octal
	11.2.1.8.3 String to Integer – Base 10 – Decimal
	11.2.1.8.4 String to Integer – Base 16 – Hexadecimal

	11.2.1.9 Integer to String
	11.2.1.9.1 Integer to String – Base 2 – Binary
	11.2.1.9.2 Integer to String – Base 8 – Octal
	11.2.1.9.3 Integer to String – Base 10 – Decimal
	11.2.1.9.4 Integer to String – Base 16 – Hexadecimal

	11.2.1.10 Array Initialize

	11.2.2 Timer
	11.2.2.1 Start Timer
	11.2.2.2 Timer Expired
	11.2.2.3 Timer Count

	11.2.3 Counter
	11.2.3.1 Counter Expired
	11.2.3.2 Counter Count

	11.2.4 Math
	11.2.4.1 Addition
	11.2.4.2 Subtraction
	11.2.4.3 Multiplication
	11.2.4.4 Division
	11.2.4.5 Modulo
	11.2.4.6 Absolute Value
	11.2.4.7 Minimum Value
	11.2.4.8 Maximum Value

	11.2.5 Brackets
	11.2.6 Boolean Logic
	11.2.6.1 Boolean AND
	11.2.6.2 Boolean OR
	11.2.6.3 Boolean NOT

	11.2.7 Compare
	11.2.7.1 Greater Than
	11.2.7.2 Greater Than or Equal to
	11.2.7.3 Less Than
	11.2.7.4 Less Than or Equal to
	11.2.7.5 Equal
	11.2.7.6 Not Equal

	11.2.8 Trigger
	11.2.8.1 Change of State (F_COS)
	11.2.8.2 Rising Edge Trigger (R_TRIG)
	11.2.8.3 Falling Edge Trigger (F_TRIG)

	11.2.9 Bit Operations
	11.2.9.1 Get Bits
	11.2.9.2 Set Bits

	11.2.10 Advanced IO/PLC Array
	11.2.10.1 Get IO Input Integer
	11.2.10.2 Set IO Output Integer
	11.2.10.3 Set IO Parameters Integer
	11.2.10.4 Get IO Diagnostics Integer
	11.2.10.5 Get IO Input Array
	11.2.10.6 Set IO Output Array
	11.2.10.7 Get IO Diagnostics Array
	11.2.10.8 Get PLC Input Array
	11.2.10.9 Set PLC Output Array
	11.2.10.10 Write Data Stream
	11.2.10.11 Read Data Stream

	11.2.11 Protocol Conversion
	11.2.11.1 Little-endian, Get 16 Bits
	11.2.11.2 Big-endian, Get 16 Bits
	11.2.11.3 Little-endian, Get 32 Bits
	11.2.11.4 Big-endian, Get 32 Bits
	11.2.11.5 Little-endian, Set 16 Bits
	11.2.11.6 Big-endian, Set 16 Bits
	11.2.11.7 Little-endian, Set 32 Bits
	11.2.11.8 Big-endian, Set 32 Bits

	11.3 ARGEE Security Features
	11.3.1 Visual Behavior
	11.3.2 Connection Behavior
	11.3.2.1 EtherNet IP Master
	11.3.2.2 Modbus TCP Master
	11.3.2.3 PROFINET Master

	11.3.3 Password Protection – ARGEE Environment
	11.3.4 Source Code Protection – Run Without Source

	11.4 System Performance
	11.4.1 Scan Cycle Information
	11.4.2 IO Variable Formats
	11.4.3 Defining Variable Types – (Advanced Definitions)

	11.5 I/O Variable Definitions
	11.5.1 Slot “0” Diagnostics Definitions
	11.5.2 Slot 1 or 2 Input Definitions
	11.5.3 Slot 1 or 2 Output Definitions

	12 Appendix II – Example Code
	12.1 How to Erase a Project from a Device
	12.1.1 Running an empty Project
	12.1.2 Using the Webserver Page
	12.1.3 Using the Turck Service Tool

	12.2 Trace Example
	12.3 How to Call a Function Block
	12.4 Creating and Importing Structure Text (ST View)
	12.4.1 Example of Exporting an ARGEE Project as Structure Text
	12.4.2 Example of Importing Structure Text and Converting it into an ARGEE Project.

	12.5 How to Export a CSV File
	12.5.1 HMI export of arrays
	12.5.2 Example of Exporting a CSV

	12.6 Advanced Application Examples
	12.6.1 Working with IO-Link
	12.6.1.1 Working with IO-Link
	12.6.1.2 Acyclic Communication – Read
	12.6.1.3 Acyclic Communication – Write

	12.6.2 Working with RFID
	12.6.2.1.1 RFID Communication – Read
	12.6.2.1.2 RFID Communication – Write
	12.6.2.1.3 RFID Communication – Strings
	12.6.2.1.3.1 Example of RFID Communication – Writing Strings
	12.6.2.1.3.2 Example of RFID Communication – Reading Strings

	12.6.3 Working with Analog
	12.7 Advanced Analog Example – Inclinometer

	12.7.1 Working with Encoders
	12.7.2 Working with State Variables
	12.7.2.1 State Machine
	12.7.2.2 State Variables

	12.7.3 Working with User-Defined Data Types
	12.7.3.1 Referencing Internal Function Block Variables
	12.7.3.2 User-Defined Data Types as Arguments to other Function Blocks

	12.7.4 Working with Hex Values
	12.7.5 Advanced Bitwise Operations – Bit Masking
	12.7.5.1 What are Bitwise Operations?
	12.7.5.2 What is Bit Masking?
	12.7.5.3 Example of Bit Masking

	12.7.6 Nesting Function Blocks
	12.7.7 Advanced HMI Example – Tank monitoring with graphics

	13 Appendix III – Libraries
	13.1 MISC
	13.1.1 MISC_wait_ms
	13.1.2 MISC_array_to_string
	13.1.3 MISC_sort
	13.1.4 MISC_filter_sample_into_array
	13.1.5 MISC_reset_filter
	13.1.6 MISC_NUMBER_st
	13.1.7 MISC_copy_byte_to_array
	13.1.8 Float_to_String

	13.2 Technology
	13.2.1 BLCEN_RFIDS_Routines
	13.2.2 BLCEN_RFIDS_Read
	13.2.3 BLCEN_RFIDS_Write
	13.2.4 TBEN_S2_RFID_READ
	13.2.5 TBEN_S2_RFID_WRITE
	13.2.6 TBEN_IOL_AsyncRead
	13.2.7 TBEN_IOL_AsyncWrite

