

ARGEE 3
Reference Manual

MA3000
0521B

2

1 General Information 9

1.1 About these instructions 9

1.2 Explanation of symbols used 9

1.3 Contents 10

1.4 Feedback about these instructions 10

1.5 Technical support 10

2 Preface 11

2.1 What is ARGEE 3? 11

2.2 Features of ARGEE 3 11

2.3 What are ARGEE’s advantages and limitations? 11

2.4 What products support ARGEE? 12

2.5 Who should use this manual? 12

2.6 What is the purpose of this manual? 12

3 Logging into ARGEE 13

3.1 Opening the Environment 13

3.2 Logging into the Program Mode 13

3.3 Welcome to Flow Chart 13

4 Flow Chart 14

4.1 The Basics 14

4.2 Condition 14

4.3 Operations 14

4.4 Actions 15

4.5 Clean Empty Rungs 15

4.6 Add Empty Rungs 16

4.7 Delete All Rungs 16

4.8 Timers 17

4.9 Counters 17

4.10 Internal Reg 18

4.11 Flow Chart Menu Bar 18

4.11.1 Run 18
4.11.2 Debug (ARGEE Flow) 19
4.11.3 Open/Save As 19
4.11.4 New Project 20
4.11.5 Convert to ARGEE PRO 20
4.11.6 Set Title 20
4.11.7 About 21
4.11.8 Flowchart 21

5 ARGEE PRO 22

5.1 The Basics 22

5.2 Variables and Expressions 22

3

5.3 Condition 23

5.4 Actions 24

5.4.1 Assignment 24
5.4.2 Coil 24
5.4.3 Timer Start 25
5.4.4 Timer On 26
5.4.5 Timer Off 27
5.4.6 Trace 28
5.4.7 Comment 29
5.4.8 Count Up 29
5.4.9 Count Down 29
5.4.10 Reset Counter 30
5.4.11 Call 31
5.4.12 How Actions respond to Conditions 32

5.5 Program Variables 33

5.5.1 Variable Name 33
5.5.2 Variable Types 33
5.5.3 Add Variable 36
5.5.4 Program Variables Context Menu 36

5.6 Alias Variables 38

5.7 Main Task 38

5.7.1 Adding Conditions to the Main Task 39
5.7.2 Adding Actions to the Main Task 40
5.7.3 Main Task Context Menu 41

5.8 Function Blocks 43

5.8.1 The Basics 43
5.8.2 Function Block Options 43
5.8.3 Function Block Segments 44
5.8.4 Function Block Statements 44
5.8.4.1 While 45
5.8.4.2 For 46
5.8.4.3 If 47
5.8.4.4 Else If 47
5.8.4.5 Else 48

5.9 Libraries 48

5.9.1 What is a Library? 48
5.9.2 Creating a Library 48
5.9.3 Importing a Library 49

5.10 HMI Screens 50

5.11 Keyboard Shortcuts 51

5.11.1 List of Keyboard Shortcuts: 51

5.12 ARGEE PRO Menu Bar 53

5.12.1 Debug (ARGEE PRO) 53
5.12.2 Print 53
5.12.3 IO Config (I/O Configuration) 53
5.12.4 HMI 53
5.12.5 Project 54
5.12.6 Edit Code 54
5.12.7 Delete Project 54

4

5.12.8 Run Without Source 54
5.12.9 ARGEE PRO Advanced Mode 55

6 ARGEE PRO Advanced Mode 56

6.1 The Basics 56

6.2 Function Block Types 57

6.2.1 Regular 57
6.2.2 Task (Multitasking) 57

6.3 Wait Until 57

7 Debugger 58

7.1 Debugger Information 58

7.1.1 Single Task 58
7.1.2 Multiple Tasks 58
7.1.3 Break Points 58
7.1.4 Trace 58
7.1.5 Order of Operation – Calls & Function Blocks 59

7.2 Debug Menu Bar (ARGEE PRO) 60

7.2.1 Halt 60
7.2.2 Step 60
7.2.3 Continue 61
7.2.4 Modify Vars (Modify Variables) 61
7.2.5 Finish Modifications 61

8 ARGEE Simulation Mode 62

8.1 Opening the Environment 62

8.2 Logging into Simulation Mode 62

8.3 Selecting Device to Simulate 62

8.3.1 Flow Chart Simulation Mode 63
8.3.2 Pro Simulation Mode 63

9 ARGEE HMI 64

9.1 The Basics 64

9.2 HMI Screen 64

9.2.1 Sections 64
9.2.1.1 Display Number/State/String 65
9.2.1.2 Display Number with Valid Range 66
9.2.1.3 Enter Number/String 67
9.2.1.4 Enter State 69
9.2.1.5 Submit Action 71

9.3 HMI Grid Screen 72

9.3.1 HMI Grid Screen 72
9.3.2 Grid Row 73
9.3.3 Grid Cell 73
9.3.4 Grid Element 74
9.3.4.1 Display Value 75
9.3.4.2 Enter Value 75
9.3.4.3 Button 77
9.3.4.4 Static Text 77
9.3.4.5 Screen List 78

5

9.3.4.6 Static Graphics 79
9.3.4.7 Multi-State Display String 80
9.3.4.8 Multi-State Display Graphics 81
9.3.4.9 Dropdown List 82
9.3.4.10 Display Value with Health 83
9.3.4.11 Link 84

9.4 HMI Image Group 86

9.5 HMI Formatting Tips 87

9.5.1 Cell Spacing in a HMI 87
9.5.2 Row Spacing in a HMI 88

10 PLC Connectivity 90

10.1 Communicating with EtherNet/IP Master – RSLogix5000 / Studio5000 90

10.2 Communicating with a PROFINET Master – SIMATIC STEP 7 92

10.3 Communicating with a Modbus TCP/IP Master – Crimson 3 94

10.4 Communicating with a Turck PLC or TX500 Series HMI – CODESYS 3 96

10.4.1 EtherNet IP 96
10.4.2 PROFINET 98
10.4.3 Modbus TCP/IP 100

11 Appendix I - Definitions 102

11.1 Built-in Functions (Ctrl-f) 102

11.2 Built-in Functions Menu 103

11.2.1 Strings/Arrays 103
11.2.1.1 String Length 104
11.2.1.2 String Left 105
11.2.1.3 String Right 106
11.2.1.4 String Middle 107
11.2.1.5 String Copy 108
11.2.1.6 String Concatenate 108
11.2.1.7 String Compare 109
11.2.1.8 String to Integer 110
11.2.1.9 Integer to String 112
11.2.1.10 Array Initialize 114
11.2.2 Timer 114
11.2.2.1 Start Timer 114
11.2.2.2 Timer Expired 115
11.2.2.3 Timer Count 116
11.2.3 Counter 116
11.2.3.1 Counter Expired 117
11.2.3.2 Counter Count 118
11.2.4 Math 118
11.2.4.1 Addition 119
11.2.4.2 Subtraction 119
11.2.4.3 Multiplication 119
11.2.4.4 Division 119
11.2.4.5 Modulo 120
11.2.4.6 Absolute Value 121
11.2.4.7 Minimum Value 121
11.2.4.8 Maximum Value 122
11.2.5 Brackets 123
11.2.6 Boolean Logic 123

6

11.2.6.1 Boolean AND 124
11.2.6.2 Boolean OR 124
11.2.6.3 Boolean NOT 124
11.2.7 Compare 125
11.2.7.1 Greater Than 125
11.2.7.2 Greater Than or Equal to 125
11.2.7.3 Less Than 126
11.2.7.4 Less Than or Equal to 126
11.2.7.5 Equal 126
11.2.7.6 Not Equal 127
11.2.8 Trigger 127
11.2.8.1 Change of State (F_COS) 127
11.2.8.2 Rising Edge Trigger (R_TRIG) 128
11.2.8.3 Falling Edge Trigger (F_TRIG) 129
11.2.9 Bit Operations 129
11.2.9.1 Get Bits 129
11.2.9.2 Set Bits 130
11.2.10 Advanced IO/PLC Array 131
11.2.10.1 Get IO Input Integer 132
11.2.10.2 Set IO Output Integer 133
11.2.10.3 Set IO Parameters Integer 133
11.2.10.4 Get IO Diagnostics Integer 134
11.2.10.5 Get IO Input Array 135
11.2.10.6 Set IO Output Array 135
11.2.10.7 Get IO Diagnostics Array 135
11.2.10.8 Get PLC Input Array 135
11.2.10.9 Set PLC Output Array 136
11.2.10.10 Write Data Stream 136
11.2.10.11 Read Data Stream 136
11.2.11 Protocol Conversion 137
11.2.11.1 Little-endian, Get 16 Bits 137
11.2.11.2 Big-endian, Get 16 Bits 138
11.2.11.3 Little-endian, Get 32 Bits 139
11.2.11.4 Big-endian, Get 32 Bits 140
11.2.11.5 Little-endian, Set 16 Bits 141
11.2.11.6 Big-endian, Set 16 Bits 141
11.2.11.7 Little-endian, Set 32 Bits 142
11.2.11.8 Big-endian, Set 32 Bits 142

11.3 ARGEE Security Features 142

11.3.1 Visual Behavior 142
11.3.2 Connection Behavior 143
11.3.2.1 EtherNet IP Master 143
11.3.2.2 Modbus TCP Master 143
11.3.2.3 PROFINET Master 143
11.3.3 Password Protection – ARGEE Environment 144
11.3.4 Source Code Protection – Run Without Source 146

11.4 System Performance 147

11.4.1 Scan Cycle Information 147
11.4.2 IO Variable Formats 147
11.4.3 Defining Variable Types – (Advanced Definitions) 149

11.5 I/O Variable Definitions 151

11.5.1 Slot “0” Diagnostics Definitions 151
11.5.2 Slot 1 or 2 Input Definitions 151
11.5.3 Slot 1 or 2 Output Definitions 152

7

12 Appendix II – Example Code 153

12.1 How to Erase a Project from a Device 153

12.1.1 Running an empty Project 153
12.1.2 Using the Webserver Page 153
12.1.3 Using the Turck Service Tool 154

12.2 Trace Example 155

12.3 How to Call a Function Block 156

12.4 Creating and Importing Structure Text (ST View) 157

12.4.1 Example of Exporting an ARGEE Project as Structure Text 157
12.4.2 Example of Importing Structure Text and Converting it into an ARGEE Project. 158

12.5 How to Export a CSV File 160

12.5.1 HMI export of arrays 160
12.5.2 Example of Exporting a CSV 160

12.6 Advanced Application Examples 162

12.6.1 Working with IO-Link 162
12.6.1.1 Working with IO-Link 162
12.6.1.2 Acyclic Communication – Read 163
12.6.1.3 Acyclic Communication – Write 164
12.6.2 Working with RFID 165
12.6.3 Working with Analog 168
12.7 Advanced Analog Example – Inclinometer 169
12.7.1 Working with Encoders 171
12.7.2 Working with State Variables 172
12.7.2.1 State Machine 172
12.7.2.2 State Variables 173
12.7.3 Working with User-Defined Data Types 177
12.7.3.1 Referencing Internal Function Block Variables 178
12.7.3.2 User-Defined Data Types as Arguments to other Function Blocks 179
12.7.4 Working with Hex Values 180
12.7.5 Advanced Bitwise Operations – Bit Masking 181
12.7.5.1 What are Bitwise Operations? 181
12.7.5.2 What is Bit Masking? 181
12.7.5.3 Example of Bit Masking 181
12.7.6 Nesting Function Blocks 181
12.7.7 Advanced HMI Example – Tank monitoring with graphics 182

13 Appendix III – Libraries 188

13.1 MISC 188

13.1.1 MISC_wait_ms 188
13.1.2 MISC_array_to_string 188
13.1.3 MISC_sort 189
13.1.4 MISC_filter_sample_into_array 190
13.1.5 MISC_reset_filter 191
13.1.6 MISC_NUMBER_st 191
13.1.7 MISC_copy_byte_to_array 192
13.1.8 Float_to_String 193

13.2 Technology 194

13.2.1 BLCEN_RFIDS_Routines 194
13.2.2 BLCEN_RFIDS_Read 194
13.2.3 BLCEN_RFIDS_Write 195

8

13.2.4 TBEN_S2_RFID_READ 196
13.2.5 TBEN_S2_RFID_WRITE 197
13.2.6 TBEN_IOL_AsyncRead 198
13.2.7 TBEN_IOL_AsyncWrite 199

9

1 General Information

1.1 About these instructions

The following user manual describes the setup, functions, and use of the system. It helps you to plan,

design, and implement the system for its intended purpose.

Note*: Please read this manual carefully before using the system. This will prevent the risk of personal

injury or damage to property or equipment. Keep this manual safe during the service life of the system. If

the system is passed on, be sure to transfer this manual to the new owner as well.

1.2 Explanation of symbols used

Warnings

Action-related warnings are placed next to potentially dangerous work steps and are marked by graphic
symbols. Each warning is initiated by a warning sign and a signal word that expresses the gravity of the
danger. The warnings have absolutely to be observed:

DANGER!

DANGER indicates an immediately dangerous situation, with high risk, the death or severe injury,
if not avoided.

WARNING!

WARNING indicates a potentially dangerous situation with medium risk, the death or severe
injury, if not avoided.

ATTENTION!

ATTENTION indicates a situation that may lead to property damage, if it is not avoided.

NOTE

In NOTES you find tips, recommendations and important information. The notes facilitate work,
provide more information on specific actions and help to avoid overtime by not following the
correct procedure.

 CALL TO ACTION

This symbol identifies steps that the user has to perform.

 RESULTS OF ACTION

This symbol identifies relevant results of steps.

10

1.3 Contents

Contents of this manual/guide:

 Overview of the ARGEE Manual Content

 How to access the ARGEE Environment

 A general overview and walkthrough of the ARGEE Flow Chart

 A general overview and walkthrough of ARGEE PRO

 A general overview and walkthrough of ARGEE PRO Advanced Mode

 A detailed explanation of the ARGEEs Debugger

 A detailed explanation of Simulation Mode

 A detailed explanation of the ARGEE HMI

 A detailed explanation of PLC Connectivity

 Appendix I - Definitions

 Appendix II – Example Code

1.4 Feedback about these instructions

We make every effort to ensure that these instructions are as informative and as clear as possible. If you

have any suggestions for improving the design or if some information is missing in the document, please

send your suggestions to techdoc@turck.com.

1.5 Technical support

For additional support, email inquiries to appsupport@turck.com, or call Application Support at 763-553-

7300, Monday-Friday 8AM-5PM CST.

mailto:techdoc@turck.com
mailto:appsupport@turck.com

11

2 Preface

Read this preface to familiarize yourself with the rest of the manual. It provides answers to the following
questions:

 Why use ARGEE?

 What are ARGEE’s advantages and limitations?

 What products support ARGEE?

 Who should use this manual?

 What is the purpose of this manual?

 What content is in the ARGEE 3 reference manual?

2.1 What is ARGEE 3?

ARGEE 3 is the programming software that is used to put logic inside Turck’s multi-protocol block I/O

devices. This can be done in anyone of three different coding formats Flow Chart, ARGEE PRO, and

ARGEE PRO Advanced. Imagine that a customer is trying to solve a simple application. This customer

does not need a PLC, but they do need some logic. ARGEE was created specifically to solve this

problem.

2.2 Features of ARGEE 3

The new features in ARGEE 3 include:

 Alias Variables

 Floating Point

 Function Blocks

 Improved HMI

 More Memory

 While, For, If, Else, Wait Until, and Call statements

2.3 What are ARGEE’s advantages and limitations?

ARGEE Advantages

 ARGEE stands alone

 Standalone application (No PLC needed to perform logic)

 ARGEE backs up the PLC

 If the application loses communication with the PLC, ARGEE can take over and safely shut
down the process

 ARGEE and the PLC work together

 Local Control (ARGEE can monitor an application and send updates back to the PLC)

ARGEE limitations

 One ARGEE block cannot control another ARGEE block

 ARGEE is not suited for motion applications

12

2.4 What products support ARGEE?

Multiprotocol Ethernet Block I/O devices

 TBEN-L Family

 TBEN-S Family

 FEN20 Family

 BL Compact Family

For more information, please contact Turck Application Engineers at: AppSupport@turck.com

2.5 Who should use this manual?

Use this manual if you are responsible for designing, installing, programming or troubleshooting a Turck

multiprotocol block that is using the ARGEE programmable functionality.

You should have a basic understanding of networking knowledge, Boolean algebra, and ladder logic. If

you do not possess these skills, contact your local Turck representative for proper training before using

ARGEE.

2.6 What is the purpose of this manual?

This manual is a reference guide for the ARGEE Programing Environment. This manual:

 Teaches the user how to use the ARGEE Flow Chart

 Teaches the user about syntax in ARGEE PRO

 Teaches the user about syntax in ARGEE PRO Advanced Mode

 Provides code for common applications

 Defines all the tag names associated with Turck I/O cards

13

3 Logging into ARGEE

3.1 Opening the Environment

 Open the ARGEE Environment and double click on argee_startup.html.

NOTE

ARGEE only opens up in HTML 5 compliant web browsers such as Google Chrome or Firefox.

3.2 Logging into the Program Mode

 Type your device’s IP Address into the ARGEE Device IP Address text box, and then click Enter
 Program Mode.

NOTE

Simulation Mode is explained in chapter 8 ARGEE Simulation Mode.

3.3 Welcome to Flow Chart

14

4 Flow Chart

4.1 The Basics

The Flow Chart Editor is made up of Condition, Operation, and Action Blocks. Conditions, Operations, and

Actions are selected by clicking their respective drop-down arrows. The Flow Chart Editor also provides

the user with two timers, two counters, and two internal registers.

4.2 Condition

The Condition Block contains input conditions. The input conditions that the user sees correspond to the

device the user is connected to. Other included input conditions are: Timer X expired, Counter X expired,

and Internal Reg X.

NOTE

Expired functions are discussed in chapter 5.3 Condition. Internal Regs (Reg = register) are
discussed later in this chapter in section 4.9 Internal Reg.

4.3 Operations

The Operation Blocks contain various Boolean operations. If no operation is desired, select Pass Through.

NOTE

Boolean Logic is discussed in the Appendix 11.2.7 Boolean Logic.

Action Blocks Operation Blocks Condition Block

15

4.4 Actions

The Action Block contains output conditions. The output conditions the user sees corresponds to the block

the user is connected to. Other included output conditions are: TON Timer X, CTU Counter X, RESET

Counter X, and Internal Reg X.

NOTE

TON Timer X (Timer ON Timer X), CTU Counter X (CounT Up Counter X), and RESET Counter X
are discussed in chapter 5.4 Actions.

4.5 Clean Empty Rungs

The Clean Empty Rungs button will remove all unused rungs from the Flow Chart Editor.

16

4.6 Add Empty Rungs

The Add Empty Rungs button will add four empty rungs to Flow Chart Editor.

4.7 Delete All Rungs

The Delete All Rungs button will remove all rungs from Flow Chart Editor.

17

NOTE

Used and unused rungs will both be deleted from the project.

4.8 Timers

Flow Chart Editor contains two Timers. The user can set the timers by typing a value into the Timer text

box. Timer values are in milliseconds (1000 Milliseconds = 1 Second).

NOTE

Timers are discussed further in chapter 5.4 Actions.

4.9 Counters

Flow Chart Editor contains two Counters. The user can set the counters by typing a value into the Counter

text box.

NOTE

Counters are discussed further in chapter 5.4 Actions.

18

4.10 Internal Reg

Flow Chart Editor contains two Internal Regs (Reg = register). The user can use an internal register as a

condition to trigger an action or as an action to trigger a condition.

4.11 Flow Chart Menu Bar

4.11.1 Run

When the user clicks Run, several things happen. First, ARGEE checks the code for errors. If the code

has no errors, ARGEE downloads the code to the block. It also calculates and displays how much

memory the code has used, and how much memory is still available. Lastly, ARGEE transitions over to

the Debug screen.

NOTE

After the run button is pressed, the environment transitions to the Debug screen. More information

about Debug can be found in chapter 7 Debugger.

19

4.11.2 Debug (ARGEE Flow)

When the user clicks Debug, different things happen depending on whether the user is in Flow Chart or

ARGEE PRO.

If the user clicks Debug while in Flow Chart, the first thing the user will notice is that the Flow Chart will

enter Debug mode. As conditions become true, the user can visually observe code progression.

4.11.3 Open/Save As

The Open/Save feature allows the user to save a current project or load a previous project. The user can

access the Open/Save As screen from different places depending on if they are in Flow Chart or ARGEE

PRO. From Flow Chart, the Open/Save As tab is available in the ARGEE Menu Bar. While in ARGEE

PRO, the user can access the Open/Save As screen by clicking on the Project tab.

20

4.11.4 New Project

The user clicks on New Project to start a new project.

4.11.5 Convert to ARGEE PRO

The user will click Convert to ARGEE PRO when they want to leave the Flow Chart mode and enter the

ARGEE PRO Programming Environment. ARGEE PRO functions are discussed in Chapter 7.

NOTE

Once the user selects Convert to ARGEE PRO, they cannot convert back to Flow Chart.

4.11.6 Set Title

The user can click Set Title to add a name to the project.

21

4.11.7 About

The user can click About if they want to view the ARGEE environment and kernel firmware revisions.

NOTE

The user can use the “Click Here” hyperlink to download the latest ARGEE environment.

4.11.8 Flowchart

The user will click flowchart when they want to leave the debug page and return to the ARGEE Flow Chart

screen.

22

5 ARGEE PRO

5.1 The Basics

The ARGEE PRO home page is made up of Keyboard Shortcuts, Main Task, Condition, Actions, HMI

Information, Program Variables, Alias Variables, Function Blocks, Statements and Libraries.

5.2 Variables and Expressions

Variables are named storage locations for changing information. Expressions are a combination of values,

variables, conditions, actions, and functions that are interpreted in a predictable way by the program. The

user must understand how the expressions of the program work to be successful in writing any code. In

ARGEE 3 Pro and Pro Advanced, expressions are everything on the right side of the screen, and

variables are on the left side of the screen.

Keyboard Shortcuts

Main Task

Condition & Actions

HMI Screens

Program Variables & Alias Variables

Expressions

Variables

Function Blocks, Statements & Libraries

23

NOTE

 Information on the functions available in ARGEE can be found in the Appendix 11.2 Built-in

Functions (Ctrl-f), and information on variables can be found in chapter 5.7 Program Variables.

5.3 Condition

The Condition box is where the user puts their input conditions. An example of an input condition could

be:

 A digital sensor going true (or false)

 An analog sensor getting into a specific range

 A specific RFID tag being presented to a transceiver

 A “start” command from the ARGEE HMI or any other PLC

 A timer or counter expiring

 A timer or counter reaching a specific value

 …many other things can be used as an input condition

The Condition box also allows the user to combine several different inputs at once.

.

Explaining the Example: The above Condition will only become true when timer 1 expires and

Input_value_1 goes true.

24

5.4 Actions

ARGEE allows the user to execute several Actions under a single Condition statement. There are 11

Actions available in ARGEE PRO. Please note that Actions are only available under a Condition

statement. They are excluded from While, For, If, Else If, Else statements (see ARGEE Pro Advanced

mode for more details)

 Assignment

 Timer Start

 Coil

 Timer On

 Timer Off

 Trace

 Comment

 Count Up

 Count Down

 Reset Counter

 Call

5.4.1 Assignment

The user would use the Assignment action if they want to load a value into a register.

Example of Assignment:

Explaining the Example: The Condition in the above statement is always “true.” The value “1” is loaded

into register Output_value_1. In other words, this means that the user’s Output 1 will always be on.

5.4.2 Coil

The user will use the Coil action if they want an Output to be “set” if the Condition is true and “cleared”

when the Condition is false.

25

Example of Coil:

Explaining the Example: When Input_value_1 is true, Output_value_2 is true. When Input_value_1 is

false, Output_value_2 is false.

5.4.3 Timer Start

The user will use the Timer Start action if they want to start a timer after the Condition has occurred.

If the Condition occurs again before the timer expires, the timer will restart.

Example of Timer Start:

Explaining the Example: When Input_value_1 goes true and then false, start timer 1. When timer 1

expires, load the value “1” into register Output_value_2 (or turn on Output 2).

26

5.4.4 Timer On

The user will use the Timer On action if they want a timer to run while a Condition is true. The user will

normally tie an additional Action or Output to the timer expired Condition.

If the Condition ends before the timer expires, the Action tied to the expired timer will not occur.

Example of Timer On:

Explaining the Example: When Input_value_1 is true, start timer 1. When timer 1 expires, coil

Output_value_2. When Input_value_1 is false, Output_value_2 will be false.

27

5.4.5 Timer Off

The user will use the Timer Off action if they want a timer to run while a Condition is false. The user will

normally tie an additional Action or Output to the timer expired Condition.

If the Condition starts before the timer expires, the Action tied to the expired timer will not occur.

Example of Timer Off:

Explaining the Example: Timer 1 starts counting as soon as the program starts. When timer 1 expires,

Output_value_2 is coiled on. When Input_value_1 is true, timer 1 is reset to zero and Output_value_2

goes false. When Input_value_1 is false, timer 1 starts counting again.

28

5.4.6 Trace

The user will use the Trace function if they want to time stamp exactly when an event occurred. Trace can

be used to measure a programs run-time behavior, how long each state takes and even which states were

visited in which order.

Example of Trace:

The user wants to use Trace to measure how long the condition is true.

NOTE

The below example uses the Change of State (F_COS) trigger in the condition block. The Change
of State trigger is discussed in the Appendix 11.2.9.1 Change of State (F_COS).

Explaining the Example: When Input_value_0 is true, Trace_1 time stamps that event. When

Input_value_0 goes false, Trace_2 time stamps that event. The Prefix String is a name that makes sense

to the user. The Expression can be any value or even another variable name that makes sense to the

user.

NOTE

An example of Trace can be found in the Appendix 12.2 Trace Example.

29

5.4.7 Comment

The user can use a Comment to explain the Condition and Action statements.

5.4.8 Count Up

The user will use Count Up if they want to count the number of times their condition is true. The user will

normally tie an additional Action or Output to the counter expired Condition.

Example of Count Up:

The user wants to do an Action after the same Condition has occurred two times.

Explaining the Example: Each time Input_value_1 is true, counter 1 counts up one time. Counter 1

expires after two counts. When counter 1 expires, Output_value_2 is coiled on.

5.4.9 Count Down

The user will use Count Down if they want to count down when a condition is true. Count Down is

normally used to counter the Count Up Action.

30

Example of Count Down:

The user wants to keep track of the number of guests in the store. When a guest walks in the store the

counter goes up, but when a guest walks out of the store the counter goes down.

Explaining the Example: Each time Input_value_1 is true (or a guest walks in the store), counter 1

counts up one time. Each time Input_value_2 is true (or a guest walks out of the store), counter 1 counts

down one time.

5.4.10 Reset Counter

The user will use Reset Counter if they want to reset a counter to zero.

Example of Reset Counter:

The user wants the ability to reset the counter at any time.

31

Explaining the Example: Each time Input_value_1 is true, counter 1 counts up one time. Each time

Input_value_2 is true, counter 1 resets to zero.

5.4.11 Call

The user will use the Call action if they want to call a built-in function or user-made Function Blocks. The

Call action has a built-in help text that displays the arguments in the called function.

Example of calling a built-in function:

Explaining the Example: Each time Input_value_1 is true, the built-in function Start_Timer will be called.

NOTE

The built-in function Start_Timer (and all other built-in functions) are explained in chapter 11.2
Built-in Functions (Ctrl-f). An example of calling a user made function block can be found 12.3 Call
Example

32

5.4.12 How Actions respond to Conditions

Action Condition=FALSE Condition=TRUE

Assignment

No action

Assigns a destination variable to a

result of expression evaluation.

Timer start

No action

If the timer is not started, it starts the

timer. Otherwise, it restarts the timer.

The timer is executed in the

background until the accumulator >=

“Expired” preset value.

Coil

Resets a variable to 0

Sets the variable to 1

Timer On

Resets the timer accumulator and

Done flag.

If timer Done flag is 0, run the timer.

The timer is accumulated every

millisecond until the accumulator

>=“Expired” preset value. In that

case, the Done flag is raised.

Timer Off

If timer Done flag is 0, run the

timer. The timer is accumulated

every millisecond until the

accumulator >=“Expires” Preset

value. In that case, the Done flag

is raised.

Resets the timer accumulator and

Done flag.

Trace

-

Record trace information into a trace

buffer.

Comment

-

-

Count up

Increments the counter whenever the condition changes from false to true.

Count down

Decrements the counter whenever the condition changes from false to true.

(note - the Preset can be a negative value)

Reset Counter

-

Restarts the counter to - 0

Call

-

Executes a function or a function

block.

33

5.5 Program Variables

Program Variables can be added, deleted, and renamed. The user can also change the variable type by

using the Type drop-down arrow. Program Variables are usable throughout the entire program.

5.5.1 Variable Name

The variable name section is where the user identifies variables that are used in the program.

5.5.2 Variable Types

The user can set his desired variable type by selecting the Type drop down arrow.

 Number - Stores integers between -2,147,483,658 and 2,147,483,657 (4 byte signed integer).

Program Variables

34

 Floating - Stores an integer and its decimal in the register.

NOTE

variable_1’s type is set to Floating and variable_2’s type is set to Number. Both registers are
loaded with the value 1.1. Notice the “.1000” is cutoff in VARIABLE_2 (variable_2) but not in
VARIABLE_1 (variable_1).

 String - Stores integers and/or characters in an array.

35

NOTE

The Call action is discussed in chapter 5.4.11 Call. Strings are discussed in chapter 11.2.2
Strings/Arrays.

 Byte - One unsigned byte. Stores integers from 0 to 255, or hex values from 0x00 to 0xff.

 WORD - Two unsigned bytes. Stores integers from 0 to 65535, or hex values from 0x0000 to
0xffff.

 Timer/Counter - Timer/Counter registers can store a value from -2,147,483,658 and
2,147,483,657.

NOTE

2,147,486,657 milliseconds is about 23 days.

 State/Enum - The user would select State/Enum (Enumeration) if he wanted to create a state
variable. State variables are used in state machines.

 Retain Number - Retains integers between -2,147,483,658 and 2,147,483,657 through a
power cycle. It syncs about every 2 minutes.

 Retain Float - Retains an integer and its decimal through a power cycle. It syncs about every
2 minutes.

36

5.5.3 Add Variable

The Add Variable button will add a Program Variable to the program.

5.5.4 Program Variables Context Menu

 To access this menu, click the number in front of the variable.

 Make it Array - Turns the variable into an array.

 Copy - Copies the variable so the user can paste it in another place.

 Cut - Cuts the variable out so the user can then paste it in another place.

 Paste Above - Paste a cut/copied variable above the selected position.

 Paste Below - Paste a cut/copied variable below the selected position.

 Toggle Add Button - Selecting this will place an “Add Variable” button above the variable

 Init - The user will use Initialize if they want to pre-set the value in a Program Variable’s
register.

37

The user can also Initialize an array if they want to pre-set the value in a Program Variable’s register.

NOTE

The user can press Control-q while in the Program Variable name area to automatically prompt
variable initialization.

 Comment - Selecting this will insert a comment line above the program variable.

38

5.6 Alias Variables

Alias Variables give friendly names to I/O Points and PLC Variables. In many cases, it is much easier to

understand the code when the user uses Alias Variables.

5.7 Main Task

When the user converts to ARGEE PRO, a Main Task is created. The user can only add Condition blocks

in the Main Task. Other function blocks can be created, but they need to be called from a Condition.

NOTE

Function blocks are explained later in this chapter, and in chapter 5.8 Function Block Type.

Main Task

39

5.7.1 Adding Conditions to the Main Task

If the user clicks the Add Condition button, a blank condition will be added to the ARGEE project.

NOTE

The Condition/Action relationship is similar to the If/Then relationship. For Example: “If this
condition goes true, then perform these actions.”

Condition

40

5.7.2 Adding Actions to the Main Task

Actions are selected from the Add Block drop-down menu. When the desired action is selected, the user

can click on the Add Block button to add the action to the condition.

NOTE

Actions are discussed more in this chapter 5.4 Actions.

Actions

41

5.7.3 Main Task Context Menu

 Copy - Copies the variable so the user can paste it in another place.

 Cut - Cuts the variable out so the user can then paste it in another place.

 Paste Above – Paste a cut/copied variable above the selected position.

 Paste Below - Paste a cut/copied variable below the selected position.

 Paste Into – Paste a cut/copied variable into the position.

 Comment Out – Turns the statement into a comment.

 Toggle Add Button - Selecting this will place an “Add Variable” button above the variable.

 Toggle Breakpoint – The statement becomes a breakpoint when the code is compiled and
ran. The program will not progress farther than the selected statement. This can be done from
the Edit Code screen or the Debug Code Screen.

(Edit Code Screen)

42

(Debug Screen)

NOTE

For more information about Debugging, check out Chapter 7 Debugger _Debugger_1

43

5.8 Function Blocks

5.8.1 The Basics

The user will use a function block if the user wants to speed up their coding process, make their code

easier to de-bug, or simply make their programs smaller.

The user will use a function block to make there code more reusable, make their code easier to de-bug, or

make the code more readable.

NOTE

For more information about how to call a function block, check out 12.3 How to Call a Function
Block

5.8.2 Function Block Options

In this section, the user can create function blocks or state names.

Function Block

 To add a function block, select Function Block from the drop-down and then click the Add button.

In ARGEE PRO, function blocks are called from the Main Task.

Function Block Segments Function Block Options

Function Block Statements

44

States

 To add a state name, select States from the dropdown and then click the Add button.

State names are used to make it easier to identify which state the program is in at any moment.

 Make it a Constant

Additionally, the States context menu has an additional option called “make it a constant.” Make it a

Constant – Loads a constant value into the state name’s register.

5.8.3 Function Block Segments

Variable

The user will select Variable under the segment type dropdown menu if the users wants to define an

internal variable of the function block.

Argument

The user will select Argument under the segment type dropdown menu if the user wants to pass

arguments to the functions block when the function block is called by the Call action in the Main task or

from another function block. An Argument can be a number, a string, a variable or another function block.

All the Argument elements should be defined as the first elements of the function block and their order

determines the order of passing arguments.

5.8.4 Function Block Statements

If the user wants to use Statements in the Main task, the user needs to convert their program to ARGEE

PRO Advanced Mode.

45

5.8.4.1 While

The While statement is one way to express a loop.

Example of While:

Explaining the Example: This code is used to cycle an output at 10ms increments. During the first

iteration, the output stays on for 10ms. During the second iteration, the output stays on for 20ms. This

loop continues for 100 iterations.

NOTE

The Wait Until statement is discussed later in section 6.4 Wait Until.

46

5.8.4.2 For

The For statement is one way to express a loop.

Example of For:

Explaining the Example: This code is used to cycle an output at 10 ms (millisecond) increments. During

the first iteration, the output stays on for 10ms. During the second iteration, the output stays on for 20ms.

This loop continues for 100 iterations.

NOTE

The Wait Until statement is discussed later in section 6.4 Wait Until.

47

5.8.4.3 If

The If statement is similar to a Condition. If a condition is true, certain actions will be executed.

Example of If:

Explaining the Example: If the door is opened, turn on a light.

5.8.4.4 Else If

The Else If statement has to follow an If statement.

Example of Else If:

Explaining the Example: If the door is opened, turn on a light. If the door is not opened, turn off the light.

NOTE

“!” is the Boolean symbol for NOT. Boolean Logic is discussed in Chapter 11.2.7 Boolean Logic.

48

5.8.4.5 Else

The Else statement has to follow either an If or an Else If statement.

Example of Else:

Explaining the Example: If the door is opened, turn on a light. Otherwise, turn the light off.

5.9 Libraries

5.9.1 What is a Library?

A library is an ARGEE element containing only State Names and Function Blocks (no Program variables

nor Alias variables), and is designated by the “.st” (Structure Text) file extension. Libraries are useful for

users who create many ARGEE programs that would require similar Function Blocks, i.e. RFID

reading/writing, IO-Link programs, a timer-based halting function, etc.

In addition to creating libraries, the user can download official ARGEE libraries from www.turck.com.

5.9.2 Creating a Library

The user can create their own library by first clicking on the Add Library button.

The user then creates their desired function blocks.

49

Once the library is complete, the user will select Export Library from the library context menu.

5.9.3 Importing a Library

The user can import an already pre-built library by clicking on the Choose Files button.

NOTE

If the user try’s to import a library with the same name as an already installed library, ARGEE will
ask the user remove the first library before importing the second.

NOTE

More information about Turck supported libraries can be found in Appendix III - Libraries

50

5.10 HMI Screens

The HMI editor is integrated into the code editor page. The user can only view their HMI after they have

built an HMI.

NOTE

Information on the HMI is available in chapter 9 ARGEE HMI.

HMI Screens

51

5.11 Keyboard Shortcuts

ARGEE 3 has many keyboard shortcuts to help make the user experience much easier. By default, the

keyboard shortcuts are collapsed.

 Click on the + to expand the keyboard shortcuts.

5.11.1 List of Keyboard Shortcuts:

 Ctrl - q Brings up a list of Program Variables

 Ctrl - L Brings ups a list of Function Block Variables (can only be initiated from inside of a
Function Block)

 Ctrl - i Brings up a list of I/O Variables

 Ctrl - f Brings up a list of Built-In Functions available at current location

 Ctrl - s Brings up a list of State Names

 Ctrl – “Down Arrow” Collapses all elements which are collapsed by default

 Ctrl – “Left/Right Arrow” Adjusts the size of the Variable and Definitions panel

 Selecting Multiple Statements – Click the white space, hold and drag down until the
statements turn green.

 Ctrl – x Cuts the selected statement(s)

 Ctrl – c Copies the selected statement(s)

 Ctrl – z Undoes the previous action (ARGEE 3 remembers 32 actions)

 Ctrl - y Redoes the previous action (ARGEE 3 remembers 32 actions)

 Ctrl – d Comment out selected statement(s). This turns the selected statements into
comments, and will not be compiled when the code is run.

Keyboard Shortcuts

52

 Ctrl – Shift – d Uncomment out selected statement(s). This turns the comments back into
statements, and will be compiled when the code is run.

 The user can press F1 at any time to bring up a list of the keyboard shortcuts.

 The user can press F2 to display a read-only view of the project. This is useful when doing
side-by-side editing.

NOTE

To bring up a read-only window that is scrolled to a specific function block, double-click the help
text in its Call block, then press F2.

53

5.12 ARGEE PRO Menu Bar

5.12.1 Debug (ARGEE PRO)

When the user clicks Debug while in ARGEE PRO, they get a brand-new menu bar with many more

options. The ARGEE PRO debugger is discussed in Chapter 7 Debugger.

5.12.2 Print

A print button is available in the ARGEE PRO menu bar. The user can click Print if they want to print out a

copy of their project.

5.12.3 IO Config (I/O Configuration)

The user can configure all the device parameters by clicking on IO Config. This is extremely useful for IO-

Link, RFID and Analog devices.

5.12.4 HMI

The HMI tab allows the user to view their HMI screen. This tab becomes active after the user has already

built an HMI. The ARGEE HMI is discussed in Chapter 9 ARGEE HMI.

54

5.12.5 Project

When the user clicks on the Project tab, they will have access to a completely new ARGEE menu bar.

5.12.6 Edit Code

The user can find the Edit Code tab on many screens in the ARGEE 3 Flow and the ARGEE 3 PRO
environment. The user will click Edit Code when he wants to leave his current location and return to the
ARGEE Flow or ARGEE PRO programming page.

5.12.7 Delete Project

Delete Project is different from New Project because it erases the project from the device then starts a
new project.

5.12.8 Run Without Source

Selecting Run Without Source will allow the device to run without displaying the actual code. This feature

blocks the “end user” from viewing the program that the user wrote. Run Without Source is one of

ARGEE’s security protocols.

55

If the “end user” tries to log into this device, they will receive the following error message:

NOTE

The user needs to save a master copy of the program before clicking Run Without Source. If the
user fails to do this, he will be unable to edit or even view the code in the future.

5.12.9 ARGEE PRO Advanced Mode

Clicking on the ARGEE PRO Advanced Mode button will expose several new features to the user. In

ARGEE PRO Advanced Mode, the user will be able to use the While, For, If, Else If, Else, and Wait Until

statements in the Main Task. They will also be able to use multitasking.

NOTE

ARGEE PRO Advanced Mode is covered in greater detail in chapter 6 ARGEE PRO Advanced
Mode.

56

6 ARGEE PRO Advanced Mode

6.1 The Basics

ARGEE PRO Advance Mode allows the user to use the While, For, If, Else If, Else and Wait Until

statements in the Main Task. It also allows function blocks to be made into their own task. This feature is

called multitasking.

 To get from ARGEE PRO to ARGEE PRO Advanced Mode, the user must click on Project, and then

ARGEE PRO Advanced Mode.

NOTE

Multitasking is explained in chapter 6.2 Function Block Type.

Wait Until

Function Block Types

57

6.2 Function Block Types

6.2.1 Regular

The user will use function block type Regular when the user wants the function block to run only when the

function block is called from the main task or from another Function Block.

6.2.2 Task (Multitasking)

The user will use function block type Task when the user wants the function block to run in parallel with

the main task. This concept is called multitasking.

6.3 Wait Until

Wait Until is a very powerful statement that halts the execution of a task until a certain condition is met. .

Example of Wait Until:

Explaining the Example: Wait until the door is opened, then turn on a light.

Example Multi-tasking using “Wait Until 1”: The task will stop executing for one cycle to allow other tasks

to be executed.

58

7 Debugger

7.1 Debugger Information

If a user is using loops and function blocks in their code, it can become very complicated to follow the next

instruction. To help with this, the ARGEE3 environment assists the user by inserting a “breakpoint” in

every executable statement in the program. Due to this implementation, the user just needs to use Halt

and Step command to stop and step through their code. In addition to Halt and Step, toggling Break

Points and using the Trace feature are also useful tools for debugging.

7.1.1 Single Task

If the user created a single-task ARGEE program (i.e. ARGEE PRO Advanced mode has not been

enabled), the debugger starts at the top of Main Task and executes it block-by-block down the page until it

gets to the end. Then, it starts over. This cycle continues until the user halts ARGEE, or the device is

powered off.

7.1.2 Multiple Tasks

If the user created an ARGEE program that uses multiple tasks, the Main Task will execute to completion,

then the next task will execute, this process continues until all tasks have been executed. No two tasks

may be executed at the same time. However, the user may switch between tasks. This is accomplished

by using the Wait Until statement.

NOTE

The Wait Until statement is discussed in 6.3 Wait Until.

7.1.3 Break Points

The user can add break points to their code from both the Edit menu and the Debug menu. The Toggle

Break Point command is located in the Main Task and function block context menus.

NOTE
More about Break Points is discussed in 5.7.3 Toggle Breakpoint.

7.1.4 Trace

Trace is a very powerful Debug tool. The user will use the Trace function if they want to time stamp

exactly when an event occurred. Trace can be used to measure a programs run-time behavior, how long

each state takes and even which states were visited in which order.

NOTE
More about Trace is discussed in 5.4.6 Trace and 12.2 Trace Example

59

7.1.5 Order of Operation – Calls & Function Blocks

If the user is debugging an ARGEE program that contains function blocks, and is advancing the program

one step at a time, they will find that the debugger appears to skip around the program when a Call block

is reached. This is because when ARGEE executes a Call block, it jumps down to its function block’s

definition, and executes that function block-by-block. As soon as the function block has been executed,

ARGEE will return to the Call block’s location, and continue down the program.

Explaining the Example: This is the sequence of calls of an ARGEE program containing a Function

Block.

60

7.2 Debug Menu Bar (ARGEE PRO)

When the user clicks Debug while in ARGEE PRO, they get a brand new menu bar with many more

options. The user can also see the status of every variable, input, output, timer and counter in their

program.

NOTE
The blue links in the left hand column are clickable and will center the window on that specific

area of the code. Active conditional statements (while,for,ifs/conditions) show up as green.

Inactive conditions show up as gray. Wait_until statements that are actively waiting will show with

yellow background.

7.2.1 Halt

The user will use Halt to pause execution of the ARGEE program.

7.2.2 Step

If the ARGEE program is halted, Step allows the user to step through the code, one line at a time.

61

7.2.3 Continue

If the ARGEE program is halted, Continue allows the program to resume normal execution.

7.2.4 Modify Vars (Modify Variables)

Clicking the Modify Vars button will allow the user to manually change variables in the Runtime Status

window. Recently modified variable values show up with “yellow” backgrounds.

7.2.5 Finish Modifications

When the user is done modifying variables in the Runtime Status window, he can click on Finish

Modifications to apply those changes.

62

8 ARGEE Simulation Mode

For individuals new to programming, or unfamiliar with ladder logic, ARGEE offers a simulation mode. The
simulation mode enables users to write and test their program without investing in any hardware. Below are
the steps needed to implement the Simulation Mode.

8.1 Opening the Environment

 Open the ARGEE Environment and double click on argee_startup.html.

NOTE

ARGEE only opens up in HTML 5 compliant web browsers such as Google Chrome or Firefox.

8.2 Logging into Simulation Mode

 Click Enter Simulation Mode.

8.3 Selecting Device to Simulate

Select a device to simulate from the drop down menu.

63

NOTE

 Not all ARGEE 3 supported devices are available in simulation mode.

 The default Simulation Mode environment is Flow Chart

8.3.1 Flow Chart Simulation Mode

 To force an input value, double-click the input

8.3.2 Pro Simulation Mode

 To force an input value, Click the Modify Vars button.

 Enter the input value, and select Finish Modifications

NOTE

Timers in Simulation Mode may not be as accurate as using a real ARGEE device.

64

9 ARGEE HMI

9.1 The Basics

The user will use the HMI screens if the user wants to create an HMI. The ARGEE HMI is composed of

screens, sections and sections elements. The ARGEE HMI can also be viewed on any device that is on

the network by going to http://(Device IP Address)/hmi.html in a Google Chrome or Firefox web

browser.

9.2 HMI Screen

When the user selects HMI Screen from the HMI drop-down list and clicks Add Screen, the users will see

a new rung of logic pop-up. The user can enter that specific HMI screens title in this box. The user will

also have the ability to add a new section to the HMI by highlighting Section and clicking Add Section.

9.2.1 Sections

After the user adds a new section, the user will be able to add elements to the HMI screen by highlighting

the desired element and clicking the Add Section Element button.

HMI Screens

http://(device/

65

9.2.1.1 Display Number/State/String

The user will use the Display Number/State/String element if the user wants to display a number, state, or

string in the HMI.

Example of Display Number/State/String:

(HMI View):

Explaining the Example: The user created an inventory HMI screen that shows how many cups they

currently have. After the user wrote the code, the user clicked Run and then View HMI in the ARGEE

menu bar.

66

9.2.1.2 Display Number with Valid Range

The user will use the Display Number with Valid Range element if the user wants to make sure a number

displayed on the HMI stays within a certain range. If the number is within a certain range, the associated

HMI section will be green. If the number is outside the specified range, the associated HMI section will be

red.

Example of Display Number with Valid Range:

(HMI View)

Explaining the Example: The user created an inventory HMI screen that shows how many cups the user

currently has in inventory. After the user wrote the code, the user clicked Run and then View HMI in the

ARGEE menu bar. When there is only one cup left in the inventory, the HMI turns red, letting the user

know they need to order more cups.

67

9.2.1.3 Enter Number/String

The user will use the Enter Number/String element if the user wants to create an editable field on the HMI.

Example of Enter Number/String:

68

(HMI View)

Explaining the Example: The user wanted to create an HMI screen that shows how many cups he

currently has in inventory. Additionally, the user wanted the ability to easily add and remove cups from his

inventory while keeping his total inventory up-to-date. After the user wrote the code, the user clicked Run

and then View HMI in the ARGEE menu bar. The user used a Display Number element to display the total

cups in his inventory. The user used an Enter Number element to create an editable field on his HMI.

Lastly, the user created two Submit Action elements which both perform some math and update the total

inventory with the new value.

NOTE

The Submit Action element will be talked about later in this chapter in section 9.4.3 Action.

69

9.2.1.4 Enter State

The user will use the Enter State element if the user wants to change program state through the HMI.

Example of Enter State:

(HMI View)

70

(HMI View)

Explaining the Example: The user wanted to be able to change the soup recipes from the HMI. After the

user wrote the code, the user clicked Run and then View HMI in the ARGEE menu bar. The user used the

Display State element to display the machines current state. The user used the Enter State element to

give him the ability to change between different recipes. Lastly, the user created a Submit Action element

submitted the changes to the machine.

NOTE

The Submit Action element is explained in detail in section 9.2.1.5 Action.

71

9.2.1.5 Submit Action

The user will use the Submit Action element when the user wants to create a button on their HMI which

either confirms changes in editable HMI fields or acts as a start button to some other chain of events.

Example of Submit Action:

(HMI View)

Explaining the Example: The user created a simple HMI which increase the current value in Register_1

by one every time the Add 1 More button is pressed. After the user wrote the code, the user clicked Run

and then View HMI in the ARGEE menu bar. The user used the Display State element to display the

current value in Register_1. The user used the Submit Action element to increment the value in

Register_1.

NOTE

The reason the user always sets the Submit Action back to “0” in the Main Task is because the
user only wants the action to happen one time. If the user did not load a “0” into the Submit Action
variable, the action would continue to happen every scan cycle.

72

9.3 HMI Grid Screen

The user will use HMI Grid Screen to create an HMI with custom graphics and colors. The HMI Grid

Screen consists of a single table which has a user specified number of rows and cells and elements.

9.3.1 HMI Grid Screen

The HMI Grid Screen element has four arguments:

 Screen Title

 Screen Width

 Rounded Edges (True / False)

 Background Color

Example of HMI Grid Screen:

(HMI View)

Explaining the example: The user created a new HMI grid screen titled “Inventory” that stretches 90% of

the screen. The user also set his rounded edges to false and his background color to transparent.

NOTE

ARGEE supports all colors that your web browser supports. This user can either type in the Hex
value or the X11 color name. For example: the user could type “whitesmoke” or “#F5F5F5.”

73

9.3.2 Grid Row

The Grid Row element has one argument:

 Background Color

Example of Grid Row:

(HMI View)

Explaining the example: The user added a row to his “Inventory” screen, and set the background color

to salmon.

9.3.3 Grid Cell

The Grid Cell element has two arguments:

 Column Span

 Border Style

 0 = No border

 1 = Border around every element in the cell

 2 = Single border around the entire cell

Example of Grid Cell:

74

(HMI View)

Explaining the example: The user separated the row into two columns. The lavender colored Grid Cell

has a column span of two and the yellow colored Grid Cell has a column span of one.

NOTE

The Static Text element will be discussed later in this chapter in section 9.6.4 Static Text.

9.3.4 Grid Element

The Grid Element has several built-in functions. The user can access them by clicking inside the Grid

Element and pressing Ctrl-f. Additionally, the height of the column is controlled by the number of Grid

Elements in a Grid Cell.

Example of Grid Element:

(HMI View)

75

Explaining the example: The user separated the row into two columns. The lavender colored Grid Cell

has a column span of two and the yellow colored Grid Cell has a column span of one. The height of the

Grid Row automatically expanded to accommodate the second element in the lavender colored Grid Cell.

NOTE

The Static Text element will be discussed later in this chapter in section 9.3.4.4 Static Text.

9.3.4.1 Display Value

The Display Value element has six arguments:

 Title

 Variable Name

 Units

 Font Color

 Font Size

 Background Color

Example of Display Value:

(HMI View)

Explaining the example: The user wants to display the value of Thermometer in degrees Celsius.

9.3.4.2 Enter Value

The Enter Value element has six arguments:

 Title

 Variable Name

 Units

 Font Color

 Font Size

 Background Color

76

Example of Enter Value:

 (HMI View)

Explaining the example: The user wants to keep track of his inventory. As units come in, he types in the

quantity and clicks Add to Inventory. The total inventory increments on the input.

NOTE

The Button element will be discussed later in this chapter in section 9.3.4.3 Button.

77

9.3.4.3 Button

The Button element has five arguments:

 Title

 Variable Name

 Color

 Size

 Background Color

Example of Button:

(HMI View)

Explaining the example: The user added a button to increment the total unit count (increment code not

displayed). When the button is pressed, the total increments by one.

9.3.4.4 Static Text

The Static Text element has four arguments:

 Text

 Font Color

 Font Size

 Background Color

Example of Static Text:

78

(HMI View)

Explaining the example: The user wants to label certain information in the HMI “Cell 8 Robot Status.”

9.3.4.5 Screen List

The developer can use the Screen List element to have more control over the HMI Screens. They can

move the location of where it is displayed, alter the background color, and change the text size.

 Title

 Title Font Size

 Title Color

Example of Screen List:

(HMI View without the Screen List element)

(HMI View with the Screen List element)

79

(HMI View without the Screen List element)

(HMI View with the Screen List element)

Explaining the Example: The user has three HMI screens: “Main Screen,” “System View,” and “System

Warnings.” By using the Screen List element, the user is able to move his screen list anywhere on his

HMI, alter the text size, and change the background color.

NOTE

The screen list can be placed anywhere on the HMI by modifying the Grid Row and Grid Cell
properties.

9.3.4.6 Static Graphics

The Static Graphics element has three arguments:

 Image File Variable

 Background Color

 Zoom Percentage

Example of Static Graphics:

(HMI View)

80

Explaining the example: The user imported a static image to display on the HMI.

NOTE

Importing images will be discussed later in this chapter in section 9.3 HMI Screen.

9.3.4.7 Multi-State Display String

The user will use the Multi-State Display String element when the users wants to show different strings

when a change of state occurs. The Multi-State Display String element has at least 11 arguments, more

maybe used depending on how many strings the developer is using.

 Title

 Variable

 Font Size

 Title Color

 Background Color

 Value 1

 Image 1

 Background 1

 Value 2

 Image 2

 Background 2

 …

Example of Multi-State Display String:

81

(HMI VIEW)

Explaining the Example: The user wrote some code to monitor the System_State (not displayed). When

the System_State changes from System_OK to System_ERROR, ARGEE will display the user’s specified

strings.

9.3.4.8 Multi-State Display Graphics

The user will use the Multi-State Display Graphics element when the users wants to show different

graphics when a change of state occurs. The Multi-State Display Graphics element has at least 12

arguments, maybe more depending on how many images the user needs.

 Title

 Variable

 Font Size

 Title Color

 Background Color

 Image Zoom Percentage

 Value 1

 Image 1

 Background 1

 Value 2

 Image 2

 Background 2

 …

Example of Multi-State Display Graphics:

82

(HMI View)

Explaining the Example: The user wrote some On / Off code to control the Current_Motor_State (not

displayed).The user also imported red and green power images to represent motor state. When the user

clicks the On / Off button, it changes the Current_Motor_State which then changes the image displayed in

the HMI.

NOTE

Importing images is discussed later in this chapter in section 9.3 HMI Screen.

9.3.4.9 Dropdown List

Dropdown List is used to give the user a list of options to change a variable. The Dropdown List element

has at least 9 arguments, more maybe used depending on how many options the developer needs:

 Title

 Var

 Size

 Title Color

 Background Color

 Value 1

 Text 1

 Value 2

 Text 2

 …

83

Example of Multi-State Display Graphics:

Explaining the Example: The developer wrote some code and created a simple Inventory HMI. The user

can add or subtract one or two units from the Total Inventory using the dropdown list.

9.3.4.10 Display Value with Health

The Display Value with Health element has six arguments:

 Title

 Title color

 Font Size

 Variable Name

 Units

 Health Variable Name

o 0 = Green

o 1 = Yellow

o 2 = Red

Example of Display Value with Health:

84

(HMI View)

Explaining the Example: The user wrote some code and created a simple Inventory HMI. When there

are 4 cups in the inventory, the HMI turns green. When there are only 2 cups left in the inventory the HMI

turns yellow.

9.3.4.11 Link

The Link element allows the user to create buttons that link different HMI screens. The difference between

Link and Screen List is that the Link buttons can change color, change text, or be hidden completely.

The Link element has four arguments:

 Title Variable (String)

 Value Variable (Number, 0 or 1)

 Background Color Variable (String)

 Size

Example of Link:

(HMI View)

 “Fridge” HMI Screen:

85

Eating food…

Get low enough, and the Store screen link appears.

Click the link to go to that screen.

 “Store” HMI Screen:

 Buying food…

Buy enough, and the Fridge screen link appears.

 Click the link to go to that screen.

Explaining the example: The user wrote code that decreases the number of hotdogs and hamburgers in

their fridge over time. If the count gets too low, the yellow link for the “Store” HMI screen is made visible

so more can be bought. After enough food is bought at the store, the green link for the “Fridge” HMI

screen appears so he can go back.

86

9.4 HMI Image Group

The user will use the HMI Image Group if the user want to upload an image to be used in their HMI

design. This can be used to present company logos or certain types of dynamic graphics such as tank

levels. Each individual image should be kept below 20kb file size to save space on the IO block.

Example of creating an HMI Image Group:

Explaining the Example: The user added an image of the Turck logo to their ARGEE project. The user

will now create an HMI Grid Screen and place the logo in their HMI.

NOTE

To access the list of the HMI variable names, the user can press Ctrl-I from anywhere inside the
HMI screens section.

87

9.5 HMI Formatting Tips

9.5.1 Cell Spacing in a HMI

Spacing is important to make a HMI look good. A HMI cell will naturally take up all of the space allocated

to it in a row. So adding empty cells with different cell span sizes can make cells a more reasonable size.

The following code demonstrates this.

This Inventory table’s width is the whole screen because it is the only cell in its row, this leaves a lot of

empty space.

Now because the cell with the Inventory table in it has a column span of 1 and there are 3 columns in the

row the width will be 1/3 of the screen.

*The spacer cells only have borders so they are easier to view for this documentation, the boarder would usually be set to 0 no border.

88

9.5.2 Row Spacing in a HMI

HMI Grid Elements within a cell will not naturally align themselves with another cells elements in the same

row if they are different sizes. Each cell will vertically center its elements to the center of the largest cell in

the row. So in some cases it is easier for the developer to align elements in separate rows.

The code bellow shows that the Enter Value element is larger than the static text labels they have next to

them. This makes the labels not clearly match the element they are describing.

89

With the static text and enter value elements separated into individual rows they are now aligned.

90

10 PLC Connectivity

10.1 Communicating with EtherNet/IP Master – RSLogix5000 / Studio5000

ARGEE blocks have the ability to communicate with an EtherNet/IP Master. The E/IP Master can

establish communication via connection points 101 & 110 when running ARGEE with up to 240 Words of

input and 240 words of output data.

Example of Communicating with an EtherNet/IP Master:

(ARGEE Setup)

(RSLogix 5000 Setup)

91

Explaining the Example so far: The user wants to pass data from an ARGEE block to the E/IP master.

The user’s code will write the value “1” into word 0 bit 0 of the ARGEE_TO_PLC register. The user then

created a generic Ethernet device in RSLogix 5000 and set the connection points to be 101 & 110.

Explaining the example: The above image is showing that the data has been successfully passed back

and forth between ARGEE and the RSLogix 5000.

NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the IO Variable
Format (discussed in 11.4.2 IO Variable Formats). For example, the user wants to force word 0 bit
5 true, the destination variable would be IO_ARGEE_TO_PLC_Word0.5

92

10.2 Communicating with a PROFINET Master – SIMATIC STEP 7

ARGEE blocks have the ability to communicate with a PROFINET Master. The PROFINET Master can

establish communication via an ARGEE GSD file.

Example of Communicating with a PROFINET Master:

(ARGEE Setup)

(SIMATIC STEP 7 Setup)

93

Explaining the Setup: The user wants to pass data from an ARGEE block to the PROFINET master. The

user’s code will write the value “1” into word 0 bit 0 of the ARGEE_TO_PLC register. The user then

defines the “I address” and “Q address” from the Step 7 Device overview screen.

Explaining the example: The above image is showing that the data has been successfully passed back

and forth between ARGEE and the SIMATIC STEP 7 engineering software.

NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the IO Variable
Format (discussed in 11.4.2 IO Variable Formats). For example, the user wants to force word 0 bit
5 true, the destination variable would be IO_ARGEE_TO_PLC_Word0.5

94

10.3 Communicating with a Modbus TCP/IP Master – Crimson 3

ARGEE blocks have the ability to communicate with a Modbus TCP/IP Master. The Modbus Master can

establish communication via registers 0x4000 (register 16384 in decimal) and 0x4400 (register 17408 in

decimal). 0x4000 is a read-only register, while 0x4400 is a read/write register.

NOTE

Some Modbus Masters automatically increment the register value by one. For example, register
16384 might be 16385. If the user is having connection issues, the user should try and increment
the register value by one.

Example of Communicating with a Modbus TCP/IP Master:

(ARGEE Setup)

(Crimson 3 Setup)

95

NOTE

If using a Red Lion HMI, set the Ping Holding Register to zero.

NOTE

Red Lion Modbus master register addressing = Original address +1. If the original address
0x400(hex) = 16384 the Red Lion address would be (16384 + 1) 16385.

Explaining the example: The above image is showing that the data has been successfully passed back

and forth between ARGEE and Crimson 3.

NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the IO Variable
Format (discussed in 11.4.2 IO Variable Formats). For example, if the user wants to force word 0
bit 5 true, the destination variable would be IO_ARGEE_TO_PLC_Word0.5.

96

10.4 Communicating with a Turck PLC or TX500 Series HMI – CODESYS 3

10.4.1 EtherNet IP

ARGEE blocks have the ability to communicate with an EtherNet IP Scanner communication via tags.

The input assembly instance is 101 (0x65), the output assembly instance is 110 (0x6E), and the

configuration assembly instance is 01 (0x01). The size of the input and output assemblies (in bytes) is

defined by the number of input and output words in your ARGEE program. The configuration size is

always 0.

Example of Communicating with a Turck PLC or TX500 Series HMI:

(ARGEE Setup)

(CODESYS 3 Setup)

97

Explaining the example: The code loads 65280 into Word 0. This turns the high byte true (255) and the

low byte false. The PLC loads a 1 into word 1 output and sets PLC_Input to 1.

NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the IO Variable
Format (discussed in 11.4.2 IO Variable Formats). For example, if the user wants to force word 0
bit 5 true, the destination variable would be IO_ARGEE_TO_PLC_Word0.5.

98

10.4.2 PROFINET

ARGEE blocks have the ability to communicate with a PROFINET Controller via tags.

Example of Communicating with a Turck PLC or TX500 Series HMI:

(ARGEE Setup)

NOTE

Use the ARGEE GSDML File to add the device to the project. It can be found in the ARGEE
Environment folder at www.Turck.com

(CODESYS 3 Setup)

http://www.turck.com/

99

Explaining the example: The code loads a 1 into IO_ARGEE_TO_PLC_WORD0. The PLC loads a 1 into

word 1 output.

NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the IO Variable
Format (discussed in 11.4.2 IO Variable Formats). For example, if the user wants to force word 0
bit 5 true, the destination variable would be IO_ARGEE_TO_PLC_Word0.5.

100

10.4.3 Modbus TCP/IP

ARGEE blocks have the ability to communicate with a Modbus TCP/IP Master. The Modbus Master can

establish communication via registers 0x4000 (register 16384 in decimal) and 0x4400 (register 17408 in

decimal). 0x4000 is a read-only register, while 0x4400 is a read/write register.

Example of Communicating with a Turck PLC or TX500 Series HMI:

(ARGEE Setup)

(CODESYS 3 Setup)

101

Explaining the example: The above image is showing that the data has been successfully passed back

and forth between ARGEE and CODESYS 3.

NOTE

If the user wants to accomplish “bit offsetting,” they need to manually adjust the IO Variable
Format (discussed in 11.4.2 IO Variable Formats). For example, if the user wants to force word 0
bit 5 true, the destination variable would be IO_ARGEE_TO_PLC_Word0.5.

102

11 Appendix I - Definitions

11.1 Built-in Functions (Ctrl-f)

To access Built-in Functions, the user can simply click anywhere in the code, and press Ctrl-f.

Click anywhere in these areas and press Control-f

103

11.2 Built-in Functions Menu

The user can use their mouse or the arrow keys on their keyboard to navigate the built-in functions menu.

11.2.1 Strings/Arrays

To access the String/Arrays functions, highlight String/Arrays, and press “” on the keyboard or click “ ”

with the mouse to advance to the next or previous level.

104

11.2.1.1 String Length

The user will use STR_LEN when the user wants to know the length of a string. The string length is

returned as an integer.

Example of String Length:

Explaining the Example: STR_COPY copies the string “Intern is playing with Strings” into Register_1.

The string “Intern is playing with Strings” is 30 elements long. The length of that string is stored in

Register_2.

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

NOTE

STR_COPY is discussed later in this chapter in section 11.2.1.5 String Copy.

105

11.2.1.2 String Left

The user will use STR_LEFT when the user wants to count from the left a certain amount source string

elements and store them in a different destination string. All destination string elements will be overwritten.

Example of String Left:

Explaining the Example: STR_COPY copies the string “Noah is playing with Strings” into Register_1.

STR_LEFT takes the first 7 elements in Register_1 and places them in Register_2.

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

NOTE

STR_COPY is discussed later in this chapter in section 11.2.1.5 String Copy.

106

11.2.1.3 String Right

The user will use STR_RIGHT when the user wants to count from the right a certain amount source string

elements and store them in a different destination string. All destination string elements will be overwritten.

Example of String Right:

Explaining the Example: STR_COPY copies the string “Noah is playing with Strings” into Register_1.

STR_RIGHT takes the last 7 elements in Register_1 and places them in Register_2.

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

NOTE

STR_COPY is discussed later in this chapter in section 11.2.2.5 String Copy.

107

11.2.1.4 String Middle

The user will use STR_MID when the user wants to pick out a certain amount of middle source string

elements and store them in a different destination string. All destination string elements will be overwritten.

Example of String Middle:

Explaining the Example: STR_COPY copies the string “Noah is playing with Strings” into Register_1.

STR_MID takes elements 8 through 21 in Register_1 and places them in Register_2.

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

NOTE

STR_COPY is discussed later in this chapter in section 11.2.1.5 String Copy.

108

11.2.1.5 String Copy

The user will use STR_COPY when the user wants to copy elements into a string. All destination string

elements will be overwritten.

Example of String Copy:

Explaining the Example: STR_COPY copies the string “Noah is playing with Strings” into Register_1.

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

11.2.1.6 String Concatenate

The user will use STR_CAT when the user wants to combine two strings to make a single string.

Example of String Concatenate:

109

Explaining the Example: STR_COPY copies the string “Noah is playing with Strings” into Register_1.

STR_COPY copies the string “ and Arrays” into Register_2. STR_CAT concatenates both strings together

to make the new string “Noah is playing with Strings and Arrays.”

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

11.2.1.7 String Compare

The user will use STR_COMPARE when the user wants to check and see if two strings are equal.

Example of String Compare:

Explaining the Example: STR_COMPARE is constantly comparing the string elements in Register_1 to

the string elements in Register_2. When the two strings are equal, Output 0 turns on.

110

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

11.2.1.8 String to Integer

The user will use STR_TO_INT when the user wants to move a string into an integer register. The user

can also convert a binary, octal, decimal, or hexadecimal base number into decimal as it moves into the

new register.

11.2.1.8.1 String to Integer - Base 2 – Binary

Explaining the Example: Register_1 is initialized to value “1110.” STR_TO_INT takes the binary string

in Register_1, converts it into a decimal integer and puts it into Register_2.

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

11.2.1.8.2 String to Integer - Base 8 – Octal

Explaining the Example: Register_1 is initialized to value “16.” STR_TO_INT takes the octal string in

Register_1, converts it into a decimal integer and puts it into Register_2.

111

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

11.2.1.8.3 String to Integer – Base 10 – Decimal

Explaining the Example: Register_1 is initialized to value “14.” STR_TO_INT takes the decimal string in

Register_1, converts it into a decimal integer and puts it into Register_2.

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

11.2.1.8.4 String to Integer – Base 16 – Hexadecimal

Example of String to Integer - Base 16 – Hexadecimal:

Explaining the Example: Register_1 is initialized to value “e.” STR_TO_INT takes the hexadecimal string in
Register_1, converts it into a decimal integer and puts it into Register_2.

112

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

11.2.1.9 Integer to String

The user will use INT_TO_STR when the user wants to move an integer into a string. The user can also

convert the integer into a binary, octal, decimal or hexadecimal base.

11.2.1.9.1 Integer to String – Base 2 – Binary

Explaining the Example: INT_TO_STR converts the decimal integer 14 into binary and puts that value

into Register_1.

11.2.1.9.2 Integer to String – Base 8 – Octal

Explaining the Example: INT_TO_STR converts the decimal integer 14 into octal and puts that value

into Register_1.

113

11.2.1.9.3 Integer to String – Base 10 – Decimal

Explaining the Example: INT_TO_STR converts the decimal integer 14 into decimal and puts that value

into Register_1.

11.2.1.9.4 Integer to String – Base 16 – Hexadecimal

Explaining the Example: INT_TO_STR converts the decimal integer 14 into hexadecimal and puts that

value into Register_1.

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”.

114

11.2.1.10 Array Initialize

The user will use ARRAY_INIT when the user wants to load certain array elements with pre-set values.

Example of Array Initialize:

Explaining the Example: ARRAY_INIT looks at Register_1, offsets the elements by two and then writes

the integer values 16-13 into elements 2-5.

11.2.2 Timer

To access the Timer functions, highlight Timer and press “” on the keyboard or click “ ” with the

mouse to advance to the next or previous level.

11.2.2.1 Start Timer

The user will use START_TIMER when the user wants to start a timer. All values are in milliseconds.

Example of Start Timer:

115

Explaining the Example: If the door opens, Timer_1 starts counting. Timer_1 expires after 5000ms (or 5

seconds).

NOTE

R_TRIG (Rising Edge Trigger) is discussed later in this chapter in section 11.2.8.2 Rising Edge
Trigger (R_TRIG).

11.2.2.2 Timer Expired

The user will use Expired when the user wants an action to occur after a timer has expired.

Example of Timer Expired:

Explaining the Example: When the door opens, Timer_1 starts. If the door is still open when Timer_1

expires, the alarm turns on.

NOTE

R_TRIG (Rising Edge Trigger) is discussed later in this chapter in section 11.2.8.2 Rising Edge
Trigger (R_TRIG).

116

11.2.2.3 Timer Count

The user will use Count when the user wants an action to occur at a certain instant in time (before the

timer has expired).

Example of Timer Count:

Explaining the Example: When the door opens, Timer_1 starts. If the door is still open after 2500ms (2.5

seconds), a light will turn on.

NOTE

R_TRIG (Rising Edge Trigger) is discussed later in this chapter in section 11.2.8.2 Rising Edge
Trigger (R_TRIG).

11.2.3 Counter

To access the Counter functions, highlight Counter and press “ ” on the keyboard or click “ ” with the

mouse to advance to the next or previous level.

117

11.2.3.1 Counter Expired

The user will use Expired when the user wants an action to occur after a counter has expired.

Example of Counter Expired:

Explaining the Example: When the door opens, Counter_1 counts up one time. Couner_1 expires after

10 counts. If Counter_1 expires, an alarm turns on.

NOTE

R_TRIG (Rising Edge Trigger) is discussed later in this chapter in section 11.2.8.2 Rising Edge
Trigger (R_TRIG).

118

11.2.3.2 Counter Count

The user will use Count when the user wants an action to occur at a certain count (before the counter has

expired).

Example of Counter Count:

Explaining the Example: When the door opens, Counter_1 counts up one time. Counter_1 expires at 10

counts. If the door is opened 2 times, a light turns on.

NOTE

R_TRIG (Rising Edge Trigger) is discussed later in this chapter in section 11.2.8.2 Rising Edge
Trigger (R_TRIG).

11.2.4 Math

The user will use Math Operations if they want to monitor, compare, or combine data from different

registers. To access the Math functions, highlight Math and press “” on the keyboard or click “ ” with

the mouse to advance to the next or previous level.

119

11.2.4.1 Addition

The user will use add (+) to add one value to another value.

Example of Add:

Explaining the Example: When Input_value_0 goes true, the value in Register_A will be added to the

value in Register_B. The result is placed in Temporary_Register.

11.2.4.2 Subtraction

The user will use subtraction (-) to subtract one value from another value.

Example of Subtraction:

Explaining the Example: The user is subtracting the value in Register_A from the value in Register_B.

When Register_A minus Register_B is greater than 1, the user Coils on Output_value_1.

11.2.4.3 Multiplication

The user will use multiplication (*) to multiply one value with another value.

Example of Multiplication:

Explaining the Example: The user is multiplying the value in Register_A with the value in Register_B. If

Register_A times Register_B is less than 1000, the user Coils on Output_value_1.

11.2.4.4 Division

The user will use division (/) to divide one value into another value.

Example of Division:

Explaining the Example: When Input_value_1 goes true, the value in Register_A will be divided by the

value in Register_B. The result is placed in Temporary_Register.

120

NOTE

If the user is concerened about keeping the fractions, the user should set their program variable
type to “Floating.”

If the registers are not set to floating, ARGEE will drop the fraction and just display the whole number.

For example:

36 / 6 = 6  ARGEE displays “6”

34 / 6 = 5
𝟒

𝟔
  ARGEE displays “5”

6 / 36 =
𝟏

𝟔
  ARGEE displays “0”

11.2.4.5 Modulo

The user will use modulo (%) if the user wants to capture the “remainder” after a division (/) has occurred.

Example of Modulo:

Explaining the Example: When Input_value_1 goes true, the value in Register_A will be divided by the

value in Register_B. The “remainder” from the division operation is placed in Temporary_Register.

For example:

36 / 6 = “6” with a remainder of “0”  ARGEE displays “0”

34 / 6 = “5” with a remainder of “4”  ARGEE displays “4”

6 / 36 = “0” with a remainder of “6”  ARGEE displays “6”

121

11.2.4.6 Absolute Value

The user will use absolute value (abs) to capture the magnitude of a real number without regard to its sign

(+/-).

Example of Absolute Value:

Explaining the Example: When Input_value_1 goes true, ARGEE will take the absolute value of the

integer in Register_A, and place into Temporary_Register.

11.2.4.7 Minimum Value

The user will use the minimum value (min) to compare multiple registers and place the smallest value in to

the destination register. The user can also use the minimum value (min) to compare multiple registers and

use the smallest value in a math operation.

Example of Minimum Value:

Explaining the Example: When Input_value_1 goes true, ARGEE will take the smallest value between

Register_A and Register_B and place that value into Temporary_Register

OR

Explaining the Example: When Input_value_1 goes true, ARGEE will take the smallest value between

Register_A and Register_B and place that value into the addition operation. The result will be put into

Temporary_Register.

122

11.2.4.8 Maximum Value

The user will use the maximum value (max) to compare multiple registers and place the largest value into

the destination register. The user can also use the maximum value (max) to compare multiple registers,

and use the largest value in a math operation.

Example of Maximum Value:

Explaining the Example: When Input_value_1 goes true, ARGEE will take the largest value between

Register_A and Register_B and place that value into Temporary_Register.

OR

Explaining the Example: When Input_value_1 goes true, ARGEE will take the largest value between

Register_A and Register_B and place that value into the Math Operation. The result will be put into

Temporary_Register.

123

11.2.5 Brackets

To access the bracket function, highlight Bracket and press “” on the keyboard or click “ ” with the

mouse to advance to the next or previous level.

The user will use brackets () to show the order of operations while performing Math.

Example of Brackets:

Explaining the Example: When Input_value_1 goes true, ARGEE will examine the “(Register_B +

Register_C)” operation first, and then divide that answer into the value in Register_A. The result will be

stored in Temporary_Register.

11.2.6 Boolean Logic

Boolean logic consists of AND (&), OR (I) and NOT (!) statements. To access the Boolean Logic functions,

highlight Boolean Logic and press “ ” on the keyboard or click “ ” with the mouse to advance to the

next or previous level.

NOTE

For information on bitwise Boolean operations, see 12.7.5 Advanced Bitwise Operations – Bit
Masking.

124

11.2.6.1 Boolean AND

The user will use the Boolean AND (&) operation if the user wants a specific Action to occur when more

than one condition is met.”

Example of Boolean AND:

Explaining the Example: When both Input_value_1 AND input_value_2 are true, load the value “1” into

Register_A.

11.2.6.2 Boolean OR

The user will use the Boolean OR (I) operation if the user wants one of several Conditions to cause an

Action to occur.

Example of Boolean OR:

Explaining the Example: When either Input_value_1 OR input_value_2 are true, load the value “1” into

Register_A.

11.2.6.3 Boolean NOT

The user will use the Boolean NOT (!) operation if the user wants an Action to occur while a Condition is

false.

Example of Boolean NOT:

Explaining the Example: When Input_value_1 is true, load the value “1” into Register_A. When

Input_value_1 is NOT true (or false), load the value “0” into Register_A.

125

11.2.7 Compare

The user will select the Compare function if he needs to compare two numbers and find the smallest or

largest, or see if they are equal or unequal. To access the Compare functions, highlight Compare and

press “ ” on the keyboard or click “ ” with the mouse to advance to the next or previous level.

11.2.7.1 Greater Than

The user will use Greater Than (>) if the user wants a Condition to occur when one register value is

greater than another value.

Example of Greater Than:

Explaining the Example: When the value in Register_A is greater than the value in Register_B, the value

“1” will be loaded into Register_C.

11.2.7.2 Greater Than or Equal to

The user will use Greater Than or Equal to (>=) if the user wants a Condition to occur when one register

value is greater than or equal to another value.

Example of Greater Than or Equal to:

Explaining the Example: When the value in Register_A is greater than or equal to the value in

Register_B, the value “1” will be loaded into Register_C.

126

11.2.7.3 Less Than

The user will use Less Than (<) if the user wants a Condition to occur when one register value is less than

another register value.

Example of Less Than:

Explaining the Example: When the value in Register_A is less than the value in Register_B, the value

“1” will be loaded into Register_C.

11.2.7.4 Less Than or Equal to

The user will use Less Than or Equal to (<=) if the user wants a Condition to occur when one register

value is less than or equal to another value.

Example of Less Than or Equal To:

Explaining the Example: When the value in Register_A is less than or equal to the value in Register_B,

the value “1” will be loaded into Register_C.

11.2.7.5 Equal

The user will use Equal (=) if the user wants a Condition to occur when one register value is equal to

another value.

Example of Equal:

Explaining the Example: When the value in Register_A is equal to the value in Register_B, the value “1”

will be loaded into Register_C.

127

11.2.7.6 Not Equal

The user will use Not Equal (<>) if the user wants a Condition to occur when one register value is not

equal to another value.

Example of Not Equal:

Explaining the Example: When the value in Register_A is equal to the value in Register_B, the value “1”

will be loaded into Register_C. When the value in Register_A is not equal to the value in Register_B, the

value “0” will be loaded into Register_C.

11.2.8 Trigger

To access the Trigger functions, highlight Trigger and press “ ” on the keyboard or click “ ” with the

mouse to advance to the next or previous level.

11.2.8.1 Change of State (F_COS)

The user will use F_COS if the user wants an action to occur only when a condition changes state.

128

Example of Change of State (F_COS):

Explaining the Example: When Input_value_1 does a Change of State from low (zero) to high (one), the

value “1” is loaded into Register_A. When Input_value_2 does a Change of State from high (one) to low

(zero), the value “0” is loaded into Register_A.

NOTE

Each monitored condition requires its own temp register.

11.2.8.2 Rising Edge Trigger (R_TRIG)

The user will use R_TRIG if the user wants an action to occur only during the rising edge of a condition.

Example of R_TRIG:

Explaining the Example: When Input_value_1 does a Change of State from low (zero) to high (one), the

value “1” is loaded into Register_A.

NOTE

Each monitored condition requires its own temp register.

129

11.2.8.3 Falling Edge Trigger (F_TRIG)

The user will use F_TRIG if the user wants an action to occur only during the falling edge of a condition.

Example of F_TRIG:

Explaining the Example: When Input_value_1 does a Change of State from high (1) to Low (0), the

value “1” is loaded into Register_A

NOTE

Each monitored condition requires its own temp register.

11.2.9 Bit Operations

To access the Bit Operations functions, highlight Bit Operations and press “” on the keyboard or click “

” with the mouse to advance to the next or previous level.

11.2.9.1 Get Bits

The user will use GET_BITS if the user wants to get bits from a certain register, and put them into another

register.

Example of GET_BITS (Target Register, Bit Offset, Bit Length):

130

Explaining the Example: The value “14” is loaded into Register_1. Due to the bit offset being 2, ARGEE

starts counting at bit 2. Due to the bit length being 2, ARGEE takes the next 2 bits, converts them to

decimal, and places the value “3” in Register_2. (View the below example)

11.2.9.2 Set Bits

The user will use SET_BITS if the user wants to get bits from a certain register and put them into another

register.

Example of SET_BITS (Target Register, Bit Offset, Bit Length, Replacement Value):

Explaining the Example: The value “14” is loaded into Register_1. Due to the bit offset being 2, ARGEE

starts counting at bit 2. Due to the bit length being 2, ARGEE takes the next 2 bits, replaces those bits

with the replacement value (a binary “2”), converts the new number to decimal and place that value in

Register_2.

131

11.2.10 Advanced IO/PLC Array

To access the Advanced IO/PLC Array functions, highlight Advanced IO/PLC Array and press “” on the

keyboard or click “ ” with the mouse to advance to the next or previous level.

NOTE

The Advanced IO/PLC Array built-in function blocks are for advanced users.

For the next several examples, we will be using a Turck BLCEN-6M12LT-2RFID-S-8XSG-P. It is important

for the user to know that BL Compacts are broken down into different sections (or slots). Slot 0 is the

communication card, Slot 1 is the first I/O card and Slot 2 is the second I/O card.

132

11.2.10.1 Get IO Input Integer

The user will use GET_IO_INP_INT if the user wants get input bits from a certain register and put them

into another register.

Example of GET_IO_INP_INT (Target Slot, Bit Offset, Bit Length):

8XSG-P Input Data Map

Explaining the Example: The user is using a BLCEN-6M12LT-2RFID-S-8XSG-P. The user wants to

monitor Input_value_0 on the 8XSG-P card and store that value in Register_1. The user uses the

GET_IO_INP_INT command and targets slot 2 (the 8XSG card), Bit 0 and the user only wants to monitor

1 bit. As Input_value_0 goes true, so does Register_1.

133

11.2.10.2 Set IO Output Integer

The user will use SET_IO_OUTP_INT if the user wants set bits in an output register.

Example of SET_IO_OUTP_INT (Target Slot, Bit Offset, Bit Length, Replacement Value):

8XSG-P Output Data Map

Explaining the Example: The user is using a BLCEN-6M12LT-2RFID-S-8XSG-P. The user wants to set

outputs on the 8XSG-P card to correspond to the value that is in Register_1 (Register_1 is initialized to

value “3” for this example). The user uses the SET_IO_OUTP_INT command and targets slot 2 (the

8XSG card), Bit 0, sets his bit length to 2 and loads the value “3” (or 11 in binary) into the output register.

As a result, Output_value_0 & Output_value_1 go true.

11.2.10.3 Set IO Parameters Integer

The user will use SET_IO_PARAM_INT if the user wants set bits in a parameter register. Turck

recommends that the user sets their device parameters via the IO Config tab or via the device webserver.

If the user wants to use this feature, please contact Turck for more information.

134

11.2.10.4 Get IO Diagnostics Integer

The user will use GET_IO_DIAG_INT if the user wants get diagnostic bits from a certain register and put

them into another register.

Example of GET_IO_DIAG_INT (Target Slot, Bit Offset, Bit Length):

BLCEN-8M12LT-4IOL-4AI4AO-VI Diagnostic Data Map

BLCEN-8M12LT-4IOL-4AI4AO-VI Web Server Diagnostic

Explaining the Example: The user is using a BLCEN-8M12LT-4IOL-4AI4AO-VI. The user wants to

monitor diagnostic data on the 4AI 4AO card and store that value in Register_1. The user uses the

GET_IO_DIAG_INT command and targets slot 2 (the 4AI4AO card), Bit 0 and the user wants to monitor 8

bits. When a wire break and an out of range error occur, the value “3” (or Binary 0000 0011) gets loaded

into Register_1.

NOTE

To monitor port 2 diagnostics, the user should set their offset to 16.
To monitor port 3 diagnostics, the user should set their offset to 32.
To monitor port 4 diagnostics, the user should set their offset to 48.
The user should read the device data sheet to figure out additional information.

135

11.2.10.5 Get IO Input Array

The user will use GET_IO_INP_ARR if the user wants to get an input array from a device. This command

is primarily used with Turck RFID and IO-Link modules. Turck recommends that the user uses the ARGEE

libraries when working with RFID and IO-Link. If the user wants to use this feature, please contact Turck

for more information.

11.2.10.6 Set IO Output Array

The user will use SET_IO_OUTP_ARR if the user wants to set an output array on a device. This

command is primarily used with Turck RFID and IO-Link modules. Turck recommends that the user uses

the ARGEE libraries when working with RFID and IO-Link. If the user wants to use this feature, please

contact Turck for more information.

11.2.10.7 Get IO Diagnostics Array

The user will use GET_IO_DIAG_ARR if the user wants to get a diagnostic array from a device. This

command is primarily used with Turck RFID and IO-Link modules. Turck recommends that the user uses

the ARGEE libraries when working with RFID and IO-Link. If the user wants to use this feature, please

contact Turck for more information.

11.2.10.8 Get PLC Input Array

The user will use GET_PLC_INP_ARR if the user wants to read an entire array from the PLC. This

command is extremely helpful when transferring RFID write data to the device.

Example of GET_PLC_INP_ARR (Destination Array, Byte PLC Offset, Byte Length):

Explaining the Example: RFID write data is sent from the PLC and loaded into program variable

RFID_Write_Data. The user uses the GET_PLC_INP_ARR command, sets an offset of 0 and transfers 4

bytes (or two words) from the PLC to the devices.

136

11.2.10.9 Set PLC Output Array

The user will use SET_PLC_OUTP_ARR if the user wants to transfer an entire array to the PLC. This

command is extremely helpful when transferring RFID read data to a PLC.

Example of SET_PLC_OUTP_ARR (Source Array, Byte PLC Offset, Byte Length):

Explaining the Example: RFID read data is loaded into program variable RFID_Read_Data. The user

uses the SET_PLC_OUTP_ARR command, sets an offset of 0 and transfers 4 bytes (or two words) to the

PLC.

11.2.10.10 Write Data Stream

The user will use the WRITE_DS command if the user is working with acyclic messaging. This command

is primarily used with IO-Link modules. Turck recommends that the user uses the ARGEE libraries when

working with IO-Link. If the user wants to use this feature, please contact Turck for more information.

11.2.10.11 Read Data Stream

The user will use the READ_DS command if the user is working with acyclic messaging. This command is

primarily used with IO-Link modules. Turck recommends that the user uses the ARGEE libraries when

working with IO-Link. If the user wants to use this feature, please contact Turck for more information.

137

11.2.11 Protocol Conversion

To access the Protocol Conversion functions, highlight Protocol Conversion and press “” on the

keyboard or click “ ” with the mouse to advance to the next or previous level.

11.2.11.1 Little-endian, Get 16 Bits

The user will use LE_GET_16BIT if the user wants to do a protocol conversion from Big-endian to Little-

endian. All registers in ARGEE are Little-endian.

Example of LE_GET_16BIT (Target Array, Offset):

Explaining the Example: This example does not actually do anything special because the user is

converting Little-endian to Little-endian. The value “1” is loaded into Register_1 position zero and the

value “2” is loaded into Register_1 position one.

138

11.2.11.2 Big-endian, Get 16 Bits

The user will use BE_GET_16BIT if the user wants to do a protocol conversion from Little-endian to Big-

endian. All registers in ARGEE are Little-endian.

Example of BE_GET_16BIT (Target Array, Offset):

Explaining the Example: The value “1” is loaded into Register_1 position zero and the value “2” is

loaded into Register_1 position one. The BE_GET_16BIT command swaps byte 1 with byte 2 and loads

the value “258” into Register_2.

139

11.2.11.3 Little-endian, Get 32 Bits

The user will use LE_GET_32BIT if the user wants to do a protocol conversion from Big-endian to Little-

endian. All registers in ARGEE are Little-endian.

Example of LE_GET_32BIT (Target Array, Offset):

Explaining the Example: This example does not do anything special because the user is converting

Little-endian to Little-endian. The value “1” is loaded into Register_1 position zero, the value “2” is loaded

into Register_1 position one, the value “3” is loaded into Register_1 position two and the value “4” is

loaded into Register_1 position three.

140

11.2.11.4 Big-endian, Get 32 Bits

The user will use BE_GET_16BIT if the user wants to do a protocol conversion from Little-endian to Big-

endian. All registers in ARGEE are Little-endian.

Example of BE_GET_32BIT (Target Array, Offset):

Explaining the Example: The value “1” is loaded into Register_1 position zero, the value “2” is loaded

into Register_1 position one, the value “3” is loaded into Register_1 position two and the value “4” is

loaded into Register_1 position three. The BE_GET_32BIT command swaps all four bytes and loads the

value “16909060” into Register_2.

141

11.2.11.5 Little-endian, Set 16 Bits

The user will use LE_SET_16BIT if the user wants to set a value in an array that is in Little-endian format.

Example of LE_SET_16BIT (Target Array, Offset, Replacement Value):

Explaining the Example: The user loads the value “14” (or Hex “e”) into Register_1. Little-endian counts

bytes from right to left so the hex value “0x0e” (or decimal 14) is placed in Register_1 position zero.

11.2.11.6 Big-endian, Set 16 Bits

The user will use BE_SET_16BIT if the user wants to set a value in an array that is in Big-endian format.

Example of BE_SET_16BIT (Target Array, Offset, Replacement Value):

Explaining the Example: The user loads the value “14” (or Hex “e”) into Register_1. Big-endian counts

bytes from left to right so the hex value “0x0e” (or decimal 14) is placed in Register_1 position one.

142

11.2.11.7 Little-endian, Set 32 Bits

The user will use LE_SET_32BIT if the user wants to set a value in an array that is in Little-endian format.

Example of LE_SET_32BIT (Target Array, Offset, Replacement Value):

Explaining the Example: The user loads the value “14” (or Hex “e”) into Register_1. Little-endian counts

bytes from right to left so the hex value “0x0e” (or decimal 14) is placed in Register_1 position zero.

11.2.11.8 Big-endian, Set 32 Bits

The user will use BE_SET_32BIT if the user wants to set a value in an array that is in Big-endian format.

Example of BE_SET_32BIT (Target Array, Offset, Replacement Value):

Explaining the Example: The user loads the value “14” (or Hex “e”) into Register_1. Big-endian counts

bytes from left to right so the hex value “0x0e” (or decimal 14) is placed in Register_1 position three.

11.3 ARGEE Security Features

11.3.1 Visual Behavior

If there is an ARGEE program running on the block, the BUS LED will flash green three times, and then

stay off for 1 second.

143

If there is not an ARGEE program running on the block, the block’s LED’s will behave in accordance with

that block’s data sheet.

11.3.2 Connection Behavior

11.3.2.1 EtherNet IP Master

If there is an ARGEE program running on the block before a PLC connection is established:

 The PLC connection point combinations 101,102 or 103,104 will not be allowed

 ARGEE will block any attempt by the PLC to upload parameters from the block

 The PLC will only be able to make connection to the block via the ARGEE connection pair
101, 110

If the PLC makes a connection to the block before an ARGEE program is loaded:

 The PLC connection point combinations 101,102 or 103,104 will be allowed

 The ARGEE connection pair 101, 110 will not be allowed

 The ARGEE environment will not allow upload of new code

11.3.2.2 Modbus TCP Master

If there is an ARGEE program running on the block before a Modbus connection is established:

 Regular Modbus/TCP registers will not be accessible

 Access to Regular Modbus/TCP registers results in “exception”

 Only ARGEE Modbus/TCP registers can be read/written from:

 0x4000 - 0x407F (Registers 16384 - 16512 in decimal) Read only Input Data (ARGEE ->

PLC)

 0x4400 – 0x447F (Register 17408 - 17536 in decimal) Read/Write Output Data (PLC ->

ARGEE)

If a Modbus/TCP connection is established before an ARGEE program is loaded:

 Regular Modbus/TCP registers are accessible

 Access to ARGEE-specific registers results in “exception”

11.3.2.3 PROFINET Master

If there is an ARGEE program running on the block before a PROFINET connection is established:

 Standard IO PROFINET connection is not allowed. The ARGEE PROFINET connection is
allowed

 Access to the block can be established by installing the ARGEE GSD file to the project

If a PROFINET connection is established before an ARGEE program is loaded:

 The regular PROFINET module ID is accessible. ARGEE PROFINET connection is not
allowed. If the ARGEE environment attempts to load an ARGEE code when a standard
PROFINET connection is establish, the ARGEE environment will block the upload.

144

NOTE

PLC Connection examples can be found in chapter 10 PLC Connectivity.

11.3.3 Password Protection – ARGEE Environment

All Turck block devices support a password-protected webserver. To access the block’s webserver, the

user needs to type the block’s IP address into any HTML5-compatible web browser.

NOTE

The default password to log into the block’s webserver is “password”.

To password-protect the user’s ARGEE environment, the user must change the webserver password. To

change the webserver password, select Change Admin Password link, follow the instructions, and click

Submit. An example is shown below.

145

Now, every time the user tries to log into the block, they will be prompted to input a password.

NOTE

To remove this protection, the user can simply change their webserver password back to
“password”.

146

11.3.4 Source Code Protection – Run Without Source

If a user wants to prevent “end users” from logging into the block and seeing or modifying code, the user

will want to use the Run Without Source feature.

The access Run Without Source, the user must first click on the Project link in the ARGEE menu bar.

If the user clicks on Run Without Source and then logs out of the environment, the ARGEE program code

will be hidden to anyone who tries to log into the block.

Logging in before clicking Run Without Source:

Logging in after the user click Run without Source:

NOTE

The user needs to save a Master Copy of the program before the user logs out of the environment
if the user wants to view or edit the code in the future

147

11.4 System Performance

11.4.1 Scan Cycle Information

The ARGEE Scan Cycle is typically between 5 – 10 ms, depending on the code size. If the user attempts

to use ARGEE in an application with scan cycles less than 5 ms, it is possible that ARGEE may miss the

signal.

Example of Scan Cycle:

Explaining the Example: In this example, the user is hammering ARGEE with repeated 3 ms signals.

Notice that ARGEE does not catch all the signals, because the signal is occurring faster than ARGEE’s

Scan Cycle.

NOTE

ARGEE is not suited for high speed motion applications.

11.4.2 IO Variable Formats

IO Variable Formats are normally used when working with IO-Link or transferring data with a PLC.

Explaining the Example: The user set IO-Link Port 1 (bit 0) true.

Explaining the Example: The user set IO-Link Port 1 (bit 12) true.

148

The user can also target bits in a word by using Word.Offset.BitLength.

Explaining the Example: The input value from IO-Link Port 1 is placed in REG1 and the value of word 0,

offset 12, 3 bits is placed in REG2.

149

11.4.3 Defining Variable Types – (Advanced Definitions)

Type

Description

Type

Allowed
arithmetic
expressions

Specific actions

Size

Number

A 32-bit signed integer to be used for
arithmetic

32-bit
signed
integer

All integer
arithmetic

Assignment 4 bytes

Floating

Single precision floating point. Only
available in TBEN and FEN20-4DIP-
4DXP

32-bit
signed
integer

All integer
arithmetic

Assignment 4 bytes

String

Null-terminated array of ASCII
character values stored as bytes

 X

Byte One unsigned byte.

All integer
arithmetic

Assignment 1 byte

Word One unsigned word.

All integer
arithmetic

Assignment 2 bytes

Timer/
Counter

Used with appropriate functions, such
as “expired,” “count,” and appropriate
actions such as “Timer On”

32-bit
signed
integer

argument to
functions
“expired” and
“count”

Specific actions:
Timer on, Timer off,
Start timer, Count
up, Count down

4 bytes

State/
Enum

Integer variable that is used to
designate states in state machine.
Behaves identically to a regular
integer variable except for 2 things:
1) Initialize – will list states
2) In the debugger, a state name

matching the current value will
show up

32-bit
integer

All integer
arithmetic

Assignment 4 bytes

Retain
Number

Integer which is automatically saved
to flash. Syncs about every two
minutes.

32 bit
signed
integer

All integer
arithmetic

Assignment

8 bytes
(4 bytes of data,
4 bytes of
additional
information)

Retain
Float

Single-precision floating point
variable which is automatically saved
to flash. Syncs about every two
minutes.

32 bit
signed
integer

All integer
arithmetic

Assignment

8 bytes
(4 bytes of data,
4 bytes of
additional
information)

150

Type

Description

Type

Allowed
arithmetic
expressions

Specific
actions

Size

PLC
Variables

Variables mapping upper level PLC
(Modbus/TCP, EtherNet/IP or
PROFINET) exchange data to an
integer variable accessible in the
program.

They are
mapped to
integer variables
in the program

All integer
arithmetic

Assignment

8 bytes
(4 bytes of
data, 4 bytes
of additional
information)

Local IO Input/Output/Diagnostic points

They are
mapped to
integer variables
in the program

All integer
arithmetic

Assignment

8 bytes
(4 bytes of
data, 4 bytes
of additional
information)

System
Variables –
PLC
Connected

PLC Connected 32 bit integer

Only 1 bit is
used to
indicate PLC
connected
state

8 bytes
(4 bytes of
data, 4 bytes
of additional
information)

System
Variables –
Program
Cycle Time

Max cycle time (since program start)
32 bit integer
indicating time in
milliseconds

Time from
the previous
cycle to the
current cycle.

8 bytes
(4 bytes of
data, 4 bytes
of additional
information)

151

11.5 I/O Variable Definitions

11.5.1 Slot “0” Diagnostics Definitions

Module_Diagnostics_Available : Module Diagnostics Bit

Station_Configuration_Changed : Station Configuration Changed Bit.

Overcurrent_Isys : Station Overcurrent Register Bit

Overvoltage_Field_Supply_V1 - Overvoltage_Field_Supply_V2 : Station Overvoltage Register Bit

Undervoltage_Field_Supply_V1 - Undervoltage_Field_Supply_V1 : Station Under Voltage Register Bit

Modulebus_Communication_Lost : Module communication register Bit

Modulebus_Configuration_Error : Module Error Bit

Force_Mode_Enabled : Force Mode Enabled Bit

11.5.2 Slot 1 or 2 Input Definitions

Input_Value_0 – Input_Value_7 : Input Channel Registers

XCVR_DETUNED_0 - XCVR_DETUNED_1 : Transceiver Detuned Bit

TFR_0 – TFR_1 : Transfer Data Bit

TP_0 – TP_1 : Tag Present Bit

XCVR_ON_0 - XCVR_ON_1 : Transceiver On Bit

XCVR_CON_0 - XCVR_CON_1 : Transceiver Connected Bit

Error_0 – Error_1 : Error Bit

Busy_0 – Busy_1 : Busy Bit

Done_0 – Done_1 : Done Bit

Error_code_0_0 - Error_code_2_0 : Error Code Bits

Read_data_0_0 – Read_data_7_0 : Read Data Registers

Diagnostics Definitions

Output_signal_overcurrent_1 - Output_signal_overcurrent_16 : Signal Overcurrent Error Bit

Overcurrent_on_sensor_group : Sensor Overcurrent Error Bit

Overcurrent_supply_VAUX1/2_at_channels_1-7 : Supply Overcurrent Error Bit

Overcurrent_VAUX1/2_Digital_In_CH1-16: AUX Power Overcurrent Error Bit

Measued_value_out_of_range_0 - Measued_value_out_of_range_3 : Measured Value Out of Range

Bit

Wire_break_0 – Wire_break_3 : Wire Break Bit. Used for wire break detection.

Hardware_failure_0 – Hardware_failure_7 : Hardware Failure Bit

Output_value_out_of_range_4 - Output_value_out_of_range_7: Output Value Out of Range Bit

Output_signal_overcurrent_0 - Output_signal_overcurrent_16 : Output Signal Overcurrent Bit

Transc_param_not_supported_0/1: Transceiver Parameter Not Supported Bit

Module_parameter_invalid_0/1: Module Parameter Invalid Bit

Hardware_failure_transceiver_0/1: Transceiver Hardware Failure Bit

Transc_power_supply_error_0/1: Transceiver Power Supply Error Bit

152

11.5.3 Slot 1 or 2 Output Definitions

Output_value_0 – Output_value_7 : Output channel register.

Reset_0 – Reset_1 : Transceiver Reset Bit

XCVR_Info_0 - XCVR_Info_1 : Transceiver Information Bit

TAG_Info_0 - TAG_Info_1 : Tag Information Bit

Write_0 – Write_1 : Write Bit

Read_0 – Read_1 : Read Bit

Tag_ID_0 – Tag_ID_1 : Tag ID Bit

Next_0 – Next_1 : Next Bit

XCVR_0 – XCVR_1 : Turn Transceiver On Bit

Byte_count_0 – Byte_count_2 : The Byte Count Bytes.

Domain_0 – Domain_1 : Domain Bit

Address_0 – Address_1 : Set Read/Write Address Bit

Write_data_0_0 - Write_data_7_0 : Write Registers

153

12 Appendix II – Example Code

12.1 How to Erase a Project from a Device

12.1.1 Running an empty Project

One way to erase the code on the device, is to first start a New Project and then click Run. This action will

load an empty project to the device.

NOTE

Just starting a new project does not erase the code on your device. The user needs to run an
empty project to erase the device.

12.1.2 Using the Webserver Page

The user can also remove the ARGEE code by selecting Erase ARGEE Program from the device’s

webserver page.

 On Google Chrome or Firefox, type the device’s IP Address into the URL and hit Enter.

NOTE

The user can find their device’s IP Address on the block itself, located in the hatch, set by rotary
dials, or by using the Turck Service Tool application.

 On the webserver page, login to the device and you should see 4 new tabs show up on the left.

NOTE

The default password for logging in should be “password”. If the user can’t login and has obtained
the device from another user, they may have changed the password.

 On the left side of webserver page, click the Station Configuration tab.

154

 At the bottom of the page click Erase ARGEE Program

12.1.3 Using the Turck Service Tool

The user can also remove the ARGEE program via the Turck Service Tool

 Open the Turck Service Tool application

NOTE

The Turck Service Tool is available for download at www.turck.us

 Click the search tab to find your device.

 Enable Expert View.

 Select your device simply by clicking on it and then click ARGEE (F8) and under the tab you should

see Delete program

or

http://www.turck.us/

155

12.2 Trace Example

Explaining the Example: When Input_value_0 is true, Trace_1 time stamps that event. When

Input_value_0 goes false, Trace_2 time stamps that event. The Prefix String is a name that makes sense

to the user. The Expression can be any value or even another variable name that makes sense to the

user.

NOTE

An example of Trace can be found in the Appendix 11.2.8.1 Change of State (F_COS).

The Trace example is continued on the next page.

Trace Example (Continued):

 Once the user has written the code, the user will click Run.

To view the Trace, the user will expand the Trace folder underneath the Runtime Status heading.

156

As the user triggers their condition true and false, the Trace data populates under the trace folder.

NOTE

To calculate how long the user’s condition is true, the user must subtract the two time stamps from
one another: 221196 – 221294 = 2 ms.

12.3 How to Call a Function Block

Example of calling a user-made Function Block:

Explaining the Example: When Input_value_1 goes true, the function block Unlock_The_Door will be
called.

NOTE

Function blocks are explained in Chapter 5.8 Function Blocks.

157

12.4 Creating and Importing Structure Text (ST View)

Structure Text (ST) is a common PLC programming language that is based on Pascal. ARGEE allows

users to export their ARGEE project (Flowchart or Pro) in ST format, as well as convert imported ST into

ARGEE PRO. Individual variables and function blocks can also be imported and exported.

12.4.1 Example of Exporting an ARGEE Project as Structure Text

(ARGEE Setup)

NOTE

From here, open the file where you want to store the text, and paste the text there. Turck
recommends a blank .txt file created with Notpad.

Explaining the Example: An ARGEE project’s Structure Text was copied, pasted, and saved into a .txt

file.

158

12.4.2 Example of Importing Structure Text and Converting it into an ARGEE Project.

Open the file where the Structure Text is to be copied from. In this case, a .txt file created with Notepad

was used to store the Structure Text from the previous example. Select it all, copy it all, and then switch to

your open ARGEE environment:

159

Explaining the Example: Preexisting Structure Text was copied, pasted, and converted into an ARGEE

PRO project.

NOTE

To import individual function blocks, just copy the function block’s definition in the preexisting
structure text, paste it below the last function block definition in your open project’s structure text,
and click Import Text Above.

Delete

160

12.5 How to Export a CSV File

12.5.1 HMI export of arrays

The HMI can export a CSV file with the Submit Action. The CSV is saved to the Downloads folder on the

connected computer. This action requires the following arguments.

 Program variable that holds the timer counter

 Update frequency of that timer in ms.

 Timestamp array containing the timer counter values.

 User’s data array.

12.5.2 Example of Exporting a CSV

The user creates arrays for measurements and the timestamp.

In this example when the timer expires the CSV_TransferArray and Time_Stamp_Array are updated and

the array pointer/variable is incremented by 1.

161

The HMI will not only display but allow the export of measurements with the Submit Action by using the

CSV(, , ,) function.

The measure data is displayed along with the time stamp. In this example, every 2 seconds.

162

12.6 Advanced Application Examples

12.6.1 Working with IO-Link

When a user combines IO-Link technology with ARGEE, the application solutions that can be created

become endless. IO-Link can support digital and analog signals. Because there are so many IO-Link

configurations, it is recommended that the user read the Turck IO-Link master manual before attempting

any IO-Link applications.

12.6.1.1 Working with IO-Link

Example of IO-Link:

(Customer’s Application)

(ARGEE Setup)

Explaining the example: The user wanted an input on an IO-Link slave to turn on an output on a different

IO-Link slave. The user modified the IO Variable Formats (Discussed in Chapter 12) to accomplish this

task.

NOTE

Depending on the fieldbus used, it may be necessary to swap process data (Little-endian vs Big-
endian). The process data can be changed from the IO Config tab. More information can be found
in the Turck IO-Link master manual chapter 4, page 4-4.

163

12.6.1.2 Acyclic Communication – Read

When working with acyclic communication, the first thing the user needs to do is import the IO-Link

libraries (Importing libraries is discussed in Chapter 5.9.3 Importing a Library).

Example of Acyclic Communication – Read:

(IODD file for an IO-Link Device)

(ARGEE Setup)

(ARGEE Debug Screen)

Explaining the example: The user input three arguments into the IOL_Read function block: Port number,

index and sub index. The IO-Link device is connected to port 1 and used his devices IODD file to figure

out the correct index (67) and sub index (1). The returned value was put into the variable

READ_DATA_PORT1. The returned value in this case was 0x0f (or 15 in decimal).

164

12.6.1.3 Acyclic Communication – Write

When working with acyclic communication, the first thing the user needs to do is import the IO-Link

libraries (Importing libraries is discussed in chapter 5.9.3 Importing a Library).

Example of Acyclic Communication –Write:

(IODD file for an IO-Link Device)

(ARGEE Setup)

(ARGEE Debug Screen)

Explaining the example: The user input five arguments into the IOL_Write function block: Port number,

index, sub index, write data, and write data length. The user plugged their IO-Link device into port 1, and

used his devices IODD file to figure out the correct index (67) and sub index (1). The user initialized

write_data_port1 with the value “e” in byte one. The user specified the data length to be 2 bytes. The

value 0x0e (or 14 in decimal) was written to byte one.

165

12.6.2 Working with RFID

Many factors influence RFID Read/Write applications. The user can reference the RFID user manual for

more information about RFID.

12.6.2.1.1 RFID Communication – Read

When working with RFID, the first thing the user needs to do is import the RFID libraries (Importing

libraries is discussed in chapter 5.9.3 Importing a Library).

Example of RFID Communication – Read:

(ARGEE Setup)

(ARGEE Debug Screen)

Explaining the example: The user input five arguments into the BLCEN_RFIDS_Read function block:

Slot number, channel number, bit offset, result data location, and number of bytes to read. Condition

statement 0 in the code is used to power up the transceiver. If statement 1 says whenever the tag present

bit goes true, perform one read command and store that value in read_data_port_1.

166

12.6.2.1.2 RFID Communication – Write

When working with RFID, the first thing the user needs to do is import the RFID libraries (Importing

libraries is discussed in chapter 5.9.3 Importing a Library).

Example of RFID Communication – Write:

(ARGEE Setup)

(ARGEE Debug Screen)

Explaining the example: The user input five arguments into the BLCEN_RFIDS_Write function block:

Slot number, channel number, bit offset, output data location, and number of bytes to write. Condition

statement 0 in the code is used to power up the transceiver. If statement 1 says, whenever the tag present

bit goes true, perform one write command, and write the value in write_data_port_1 to the tag. The value

0x0e (or 14 in decimal) was write to byte one the tag.

167

12.6.2.1.3 RFID Communication – Strings

When working with RFID, the first thing the user needs to do is import the RFID libraries (Importing

libraries is discussed in Chapter 5.9). Strings cannot be written or read from RFID tags directly. If writing,

the user’s string must be converted to a byte array, then written to the tag. If reading, the incoming byte

array from the tag must be converted into a string by the user. These processes are shown below.

12.6.2.1.3.1 Example of RFID Communication – Writing Strings

(ARGEE Setup) (ARGEE Code)

Explaining the example: The user wants to write the string “FULL” to an RFID tag. The characters

“FULL” are stored in my_string, then my_string is copied element-by-element to the byte array called

bytes_sent_to_tag. The data in bytes_sent_to_tag is now ready to be written to the tag, using the

appropriate Write function from the Turck RFID library (not shown).

12.6.2.1.3.2 Example of RFID Communication – Reading Strings

(ARGEE Setup) (ARGEE Code)

Explaining the example: The user wants to store four characters read from a tag as a string. Data was

read from the tag and stored in bytes_read_from_tag by using the appropriate Read function from the

Turck RFID library (not shown). Bytes_read_from_tag is then copied element-by-element to my_string. A

zero is required at the end of my_string, because strings are null-terminated.

NOTE

Strings must be one element larger than the number of characters you want to store, and must be
surrounded by quotations “ ”

168

12.6.3 Working with Analog

If the user wants to use an analog input signal to track errors and make corrections to an analog output

signal (similar to a proportional controller), they no longer need a PLC. ARGEE has the ability to apply

logic and math to analog signals.

Example of Working with Analog:

(Customer Application)

(ARGEE Setup)

Explaining the example: The user wants to make a proportional controller. A proportional controller

continuously calculates the difference between the output and the input. The purpose of a proportional

controller is to minimize the difference (error) by adjusting the controller’s output. Analog sensors use 16-

bit signed integers. Therefore the range of the analog input signal is from -32767 to +32767. The user

want’s an inversely proportional controller, so they are taking 32767 – Input_value_0 and loading that

value into Output_value_4.

Analog Input Signal
ARGEE Controller Analog Output Device

Feed Back Loop

Error
+

-

OutputController Output

Proportional Controller Example

169

12.7 Advanced Analog Example – Inclinometer

In this example, the user wants to use an inclinometer to track the angle of a boom, and display the angle

on an HMI. If it is in a safe operation range in the X Axis, it will show a green light and display the safe

operation angle on an HMI. If it is in a hazard operation angle in the Y Axis, it will sound an alarm and

show the hazard angle on an HMI.

(ARGEE Setup)

170

(ARGEE HMI)

171

Explaining the example: The user wrote the code to monitor the angle of the boom in both the X and Y

axis. The angle of the boom in the Y axis is sounding an Alarm while the angle in the X axis is appropriate

for operation.

12.7.1 Working with Encoders

If a user wants to use an encoder to monitor rotary positioning, and display the angle on an HMI, they no

longer need a PLC. ARGEE has the ability to apply logic and math to the digital signals of an encoder.

Example of Working with Encoders:

(ARGEE Setup)

NOTE

The user will have to be in ARGEE PRO Advanced Mode to unlock multitasking. The
position_Calc function block will be running as a separate task.

172

(ARGEE HMI)

Explaining the example: The user is trying to get an input from a conventional incremental encoder. By

normalizing the output signal, the user can display the process data and the associated angle of the

encoder on an HMI.

NOTE

Download the device user manual at www.turck.com to learn more about encoder settings.

12.7.2 Working with State Variables

State Variables are helpful in keeping track of the signal as it steps through the code. Before the user

creates State Variables, it is a good idea to create a State Machine.

12.7.2.1 State Machine

A state machine is drawing on a piece of paper that shows how the signal transitions from one state to

another.

http://www.turck.com/

173

Example of a State Machine:

The user wants to use their ARGEE block to create a Traffic Cop. A Traffic Cop is a device that merges

two conveyer belts together without causing a box collision. The first thing the user does is gets out a

piece of paper and draws up a state machine.

Explaining the State Machine: All the States are in light blue boxes. All the Events occur on the arrows.

All Actions are in dark blue ovals.

12.7.2.2 State Variables

Example of a State Variables:

(ARGEE Setup)

The user is satisfied with the Traffic Cop State Machine. The user now creates Program and State

Variables.

NOTE

Program Variable “State” is initialized to Start-up.

Condition: Device powers up. Condition: Belt 2 is off.
Event: NothingStart

Action: Belt 1 turns on.

Action: Belt 2 turns off.

Event: Sensor 2 is false

Condition: Belt 2 is on.

Event: Sensor 1 is true.
& Sensor 2 is true.

Event: Sensor 1 is false.
& Sensor 2 is true.

Action: Belt 2 turns on.Action: Belt 2 turns off.

OR

174

Explaining the example: When the device is powered up, Belt 1 is turned on and Belt 2 is turned off. If

Sensor 2 goes true (or a box shows up on Belt 2), ARGEE will check and see if Sensor 1 is true (or if a

box is on Belt 1). If Sensor 1 is true then Belt 2 stays off. If Sensor 1 is false, Belt 2 turns on and clears the

box on Belt 2.

This same state machine can be written with Function Blocks and If statements:

(ARGEE Setup)

175

176

Explaining the example: If Sensor_1 is true or false and Sensor_2 is false, turn on Belt_1 and turn off

Belt_2. If both sensors are true, turn on Belt_1 and turn off Belt_2. If Sensor_1 is false and Senor_2 is

true, Turn off Belt_1 and turn on Belt_2.

177

12.7.3 Working with User-Defined Data Types

A User-Defined Data Type (UDT) is a function block which contains variables but no code. A user would

create a UDT if they were dealing with multiple objects with multiple properties.

Example of User-Defined Data Types:

Suppose the user has 2 cells, and each cell has 2 properties: temperature and flow. This is best illustrated

as a matrix:

To express this in ARGEE, the user will create a Function Block with variables (the columns), and then

create an array of this Function Block (the rows). No code goes into the Function Block; its only purpose is

to contain variables.

(ARGEE Setup)

NOTE

If the user wanted to add more rows to this matrix, he would increase the size of the array. If the
user wanted to add more columns, he would create more Function Block variables.

178

12.7.3.1 Referencing Internal Function Block Variables

Press Ctrl–q, select the desired variable, and then fill in the array element number (between the brackets).

NOTE

Cell number = element number+1, this is because array numbering starts at element 0.

Explaining the example: Input 0 is stored in the variable Cell[0].Flow (Row 1, Column 2).

179

12.7.3.2 User-Defined Data Types as Arguments to other Function Blocks

(ARGEE Setup)

(ARGEE Debug Screen)

Explaining the example: The user wants to convert raw data from their IO-Link temperature sensor to

degrees Celsius, and store it as a variable inside a user-defined data type (UDT). They pass a raw value and

the name of their UDT into their temperature conversion Function Block, which converts the value and stores

the result in the temperature_in_celsius variable of the specified UDT. If the raw value is 2147, the

temperature in Celsius is -79.57 degrees.

180

12.7.4 Working with Hex Values

ARGEE can easily convert any value to hex. For example: if the user types “Hex(12),” then the value “c”

will be returned.

Example of Working with Hex Values:

(ARGEE Setup)

(HMI View)

Explaining the example: The user created a decimal to hex converter. If the user enters a decimal value

into the Enter Decimal Value text box and clicks Submit, the hex value will show in the Hex Value display

field.

181

12.7.5 Advanced Bitwise Operations – Bit Masking

12.7.5.1 What are Bitwise Operations?

A bitwise operation is a Boolean operation that compares variables’ bits against each other, instead of

comparing the variables’ values. ARGEE has bitwise OR, AND, NOR, and NAND, though AND is the only

operation with a practical use, which is bit masking.

12.7.5.2 What is Bit Masking?

Suppose you have an IO-Link laser distance sensor that outputs one word of process data; the first 15 bits

are dedicated to distance data, and the last 3 bits are status bits. To use the distance as a number in your

ARGEE code, you want to ignore the status bits, and just work with the distance data, represented as a

15-bit integer. That act of “covering up” unwanted bits is called bit masking.

12.7.5.3 Example of Bit Masking

(ARGEE Setup)

(ARGEE Debug Screen)

Explaining the example: IOL_word_0 is compared bit-by-bit against 0x1FFF. Whenever both bits of the
numbers are TRUE, a 1 is assigned to that bit position in distance. If either bit is FALSE, a 0 is assigned to
that bit position in distance. The result is that the last 3 bits of IOL_word_0 are ignored.

12.7.6 Nesting Function Blocks

ARGEE 3 has the capability to nest Function Blocks. The user will nest Function Blocks if the user wants

a function block to call another function block.

Decimal Hex Binary
65535 0xFFFF 1111 1111 1111 1111
8191 0x1FFF 0001 1111 1111 1111

182

Explaining the example: The MainTask calls Main_Function which is Function_Block_1.

Function_Block_1 then calls Function_Block_2.

NOTE

To get a list of Local Variables for the Function Block, press Ctrl-L.

12.7.7 Advanced HMI Example – Tank monitoring with graphics

ARGEE 3 allows the user to code an HMI with static images and multi state graphics that respond to your

code. The user is trying to monitor a tank with an ultrasonic sensor. The user then wants to display the

status of the tank level on an HMI with representative pictures and a status color of each level.

(ARGEE Setup)

183

184

NOTE

Your sensor range might be different, or need to be “taught” its range. Look at the user manual for
your sensors on www.turck.com

Now let’s configure the HMI:

The plan is to place a logo in the top right corner and then have a central column with images that display

tank level with a color based status background. Below this image we will display the tank state with the

same color based status background. It’s a good idea to sketch out what you’re trying to accomplish so

that you can code against a design. See Chapter 9: ARGEEE HMI for more details.

First, we’ll add an HMI Image Group and upload our images.

http://www.turck.com/

185

NOTE

The user can upload any image. Keep file size below 20kb.

Now let’s add a grid screen.

Our first row is just to display the logo in the top left of the screen. We added two Grid Cells one that

spans 1/5 of the screen and the other 4/5 screen. We then added a Grid Element to the first Grid Cell and

used the STATIC_GRAPHICS function to place our logo, using its variable name.

NOTE

HMI functions are available by hitting Ctrl-f, and image file variables are available by hitting Ctrl-i.

Our second row is empty; it will be used as a spacer.

Our third row will have three cells, and the middle cell will have the Grid Elements Multi State Display

Graphics and Multi State Display Strings. Both of these functions will use different background colors for

each state.

186

The last row will be empty and used as a spacer.

187

(HMI View)

Explaining the example: The user wrote some code to monitor the tank level, and then configured an

HMI using custom graphics to display the state of the tank level. As the tank level changes, the HMI

changes in response to the tank state.

188

13 Appendix III – Libraries

13.1 MISC

Import the MISC library.

13.1.1 MISC_wait_ms

Function: When MISC_wait_ms is called it halts the task execution for the designated amount of time.

The imported MISC_wait_ms function block should look like the image bellow.

Program Variables: A MISC_wait_ms program variable is needed to call the function.

How to Call: The Call needs a wait time in ms argument. This can be a static number or a number program
variable.

13.1.2 MISC_array_to_string

Function: When MISC_array_to_string is called the input array will be written into the output string for as

many bytes that have been designated in the argument of the call.

The imported MISC_array_to_string has Byte, String, and Number arguments.

189

Program Variables: To call MISC_array_to_string a MISC_array_to_string variable, a string array variable, a
byte variable, and a number variable are needed.

How to Call: The call needs a number variable that is the array being input, a string variable that will hold the
outputted string, and then a number that is the amount of bytes the array is long.

13.1.3 MISC_sort

Function: When MISC_sort is called the output number array is filled with the data of the input array in

order of increasing value, with length denoted by number_of_elements.

The sort function block has 2 number arrays (one for the input and one for the output), and a number that
represents the length of the input array as arguments.

Program Variables: To call sort a MISC_sort variable, an input number array that holds the values that are
being sorted, an output number array that will hold the sorted array, and the length of the input array are
needed.

190

How to Call: The call needs a number array for the input, a number array to hold the output, and number to
represent the length of the input array.

13.1.4 MISC_filter_sample_into_array

Function: When MISC_filter_sample_into_array is called it puts the current input sample value into the

sequential_array and the filtered_array. The sequential_array is an array that holds the input sample

values in the order they were input, and the filtered_array is an array that holds the input sample values in

order of increasing size. filtered_array and sequential_array have lengths of 5, and all data input after the

5th will overwrite the first data values stored.

*To change the array length the user will need to alter the code in the function block change the 5s

highlighted bellow to the desired length, and change the # of Array Elements of filtered_arr and seq_arr in

the Function Blocks variables to the desired length.

The MISC_filter_sample_into_array function block only has a single number argument.

Program Variables: The needed variables to filter sample are a MISC_filter_sample_into_array variable to
call, and a number variable to represent the sample values being input.

191

How to Call: For MISC_filter_sample_into_array to be called successfully it cannot be continuously called, so
it needs to be in a condition block. If it is called continuously the filtered array values will be filled with repeats
of the current sample value, and not populated with 5 unique sample values.

13.1.5 MISC_reset_filter

Function: The MISC_reset_filter when called resets the MISC_filter_sample_into_array so that the next

sample value is put into the arrays first data slot. It does not clear the MISC_filter_sample_into_array

arrays, just resets where the next sample data goes in the array to the beginning.

The function block should look as it does bellow.

Program Variables: To call MISC_reset_filter a MISC_reset_filter variable is needed, and a
MISC_filter_sample_into_array variable is needed for the argument.

How to Call: When calling MISC_reset_filter the argument needs to be a MISC_filter_sample_into_array
variable.

13.1.6 MISC_NUMBER_st

Function: The function of MISC_NUMBER_st is to pass a number to a function block.

The function block should look as it does bellow, with no arguments.

Program Variables: The only variable needed is a MISC_NUMBER_st variable.

192

How to Call: This function block is not really called instead a number is assigned to the variable in the
function block as shown below.

13.1.7 MISC_copy_byte_to_array

Function: MISC_copy_byte_to_array copies the data from a source byte array to a destination byte array,

and the data from the source and to the destination can both be offset.

The Function Block has source and destination Byte array arguments, source and destination offset number
arguments, and an array length number argument.

Program Variables: The program variables needed are the MISC_copy_byte_to_array to call, the length of
the arrays (in this case 32), and source and destination arrays. Offset values are also used but they do not
need to be variables.

How to Call: To call MISC_copy_byte_to_array the user needs the source array, the destination array, a
source offset number, a destination offset number, and number to represent the length of the arrays.

193

13.1.8 Float_to_String

Function: Float_to_String takes an input float value and puts it into a string.

The Function Block should look as it does bellow.

Program Variables: To Call Float_to_String a Float_to_String variable is needed, a float variable, a string,
and a number variable.

How to Call: To call Float_to_String the following arguments must be satisfied; a float variable that holds the
float being input, the number of decimal places the float variable has, and the string that the is being output
with the value of the float variable.

194

13.2 Technology

13.2.1 BLCEN_RFIDS_Routines

For BLCEN-RFIDS devices to read or write the transceiver needs to be turned on. This is done as shown
below.

13.2.2 BLCEN_RFIDS_Read

Function: BLCEN_RFIDS_Read when called waits for the next tag to be presented to read, and that data

is held in the input read data.

The Function Block should look as it does bellow.

Program Variables: To call BLCEN_RFIDS_Read a BLCEN_RFIDS_Read variable, and a byte array are
needed.

How to Call: When calling BLCEN_RFIDS_Read the following arguments need to be fulfilled; what slot of the
BLCEN has the 2RFID channels, which channel is being used, how much the data being read should be
offset, the reset data byte array, and the number of bytes that are being read from the tag.

195

13.2.3 BLCEN_RFIDS_Write

Function: When BLCEN_RFIDS_Write is called the data from an outp_data is written onto the next tag

that is put into the transvers field.

The Function Block should look as it does bellow.

Program Variables: To call BLCEN_RFIDS_Write a BLCEN_RFIDS_Write variable is needed, and a Byte
array that holds the data that is being written is needed.

How to Call: The arguments needed to call BLCEN_RFIDS_Write are, what slot of the BLCEN has the
2RFID channels, which channel is being used, how much the data being written should be offset onto the tag,
the data array that is being written onto the tag, and the number of bytes that are being written onto the tag.

196

13.2.4 TBEN_S2_RFID_READ

Function: TBEN_S2_RFIDS_READ when called waits for the next tag to be presented and reads it, and

that data is held in the input read data.

The Function Block should look as it does bellow.

Program Variables: To call TBEN_S2_RFIDS_READ a TBEN_S2_RFIDS_READ variable, and a byte array
are needed.

How to Call: When calling TBEN_S2_RFIDS_READ the following arguments need to be fulfilled; which
channel is being used, how much the data being read should be offset, the number of bytes that are being
read from the tag, the reset data byte array, and how much the array data should be offset.

197

13.2.5 TBEN_S2_RFID_WRITE

Function: The function of the TBEN_S2_RFID_WRITE when called writes the data from a byte array is

written onto the next tag that is presented into the transceiver’s field.

The Function Block should look as it does bellow.

Program Variables: To call TBEN_S2_RFID_WRITE a TBEN_S2_RFID_WRITE variable is needed, and a
Byte array that holds the data that is being written is needed.

How to Call: The arguments needed to call TBEN_S2_RFID_WRITE are, which channel is being used, how
much the data being written should be offset onto the tag, the length of the array being written onto the tag,
the data array that is being written onto the tag, and how much the array data being written should be offset.

198

13.2.6 TBEN_IOL_AsyncRead

Function: When TBEN_IOLAsyncRead is called the parameter data from a chosen index and sub index

is read into the ds_tx_array and ds_rx_array.

The function block should look as it does bellow.

Program Variables: The variables needed to call TBEN_IOL_AsyncRead are a TBEN_IOL_AsyncRead
variable, and a byte array variable.

How to Call: To call TBEN_IOL_AsyncRead the following arguments need to be filled; the port that is being
used, the parameter index that the user is trying to read, the sub index that the user is trying to read, and a
reset byte array.

199

13.2.7 TBEN_IOL_AsyncWrite

Function: When TBEN_IOL_AsyncWrite is called the data from a byte array is written into a chosen index

and sub index.

The function block should look as it does bellow.

Program Variables: The only program variables needed are a TBEN_IOL_AsyncWrite variable, and a byte
array variable.

How to Call: To call TBEN_IOL_AsyncWrite the following arguments need to be satisfied, the port that is
being used, the parameter index that the user is trying to write into, the sub index that the user is trying to
write into, the byte array that is being written, and the length of the array being written.

200

TURCK sells its products through Authorized Distributors. These distributors provide our customers
with technical support, service and local stock. TURCK distributors are located nationwide –

Including all major metropolitan marketing areas
For Application Assistance or for the location of your nearest TURCK distributor, call:

1-800-544-7769

Specifications in this manual are subject to change without notice. TURCK also reserves the right to
make modifications and makes no guarantee of the accuracy of the information contained herein.

	1 General Information
	1.1 About these instructions
	1.2 Explanation of symbols used
	1.3 Contents
	1.4 Feedback about these instructions
	1.5 Technical support

	2 Preface
	2.1 What is ARGEE 3?
	2.2 Features of ARGEE 3
	2.3 What are ARGEE’s advantages and limitations?
	2.4 What products support ARGEE?
	2.5 Who should use this manual?
	2.6 What is the purpose of this manual?

	3 Logging into ARGEE
	3.1 Opening the Environment
	3.2 Logging into the Program Mode
	3.3 Welcome to Flow Chart

	4 Flow Chart
	4.1 The Basics
	4.2 Condition
	4.3 Operations
	4.4 Actions
	4.5 Clean Empty Rungs
	4.6 Add Empty Rungs
	4.7 Delete All Rungs
	4.8 Timers
	4.9 Counters
	4.10 Internal Reg
	4.11 Flow Chart Menu Bar
	4.11.1 Run
	4.11.2 Debug (ARGEE Flow)
	4.11.3 Open/Save As
	4.11.4 New Project
	4.11.5 Convert to ARGEE PRO
	4.11.6 Set Title
	4.11.7 About
	4.11.8 Flowchart

	5 ARGEE PRO
	5.1 The Basics
	5.2 Variables and Expressions
	5.3 Condition
	5.4 Actions
	5.4.1 Assignment
	5.4.2 Coil
	5.4.3 Timer Start
	5.4.4 Timer On
	5.4.5 Timer Off
	5.4.6 Trace
	5.4.7 Comment
	5.4.8 Count Up
	5.4.9 Count Down
	5.4.10 Reset Counter
	5.4.11 Call
	5.4.12 How Actions respond to Conditions

	5.5 Program Variables
	5.5.1 Variable Name
	5.5.2 Variable Types
	5.5.3 Add Variable
	5.5.4 Program Variables Context Menu

	5.6 Alias Variables
	5.7 Main Task
	5.7.1 Adding Conditions to the Main Task
	5.7.2 Adding Actions to the Main Task
	5.7.3 Main Task Context Menu

	5.8 Function Blocks
	5.8.1 The Basics
	5.8.2 Function Block Options
	5.8.3 Function Block Segments
	5.8.4 Function Block Statements
	5.8.4.1 While
	5.8.4.2 For
	5.8.4.3 If
	5.8.4.4 Else If
	5.8.4.5 Else

	5.9 Libraries
	5.9.1 What is a Library?
	5.9.2 Creating a Library
	5.9.3 Importing a Library

	5.10 HMI Screens
	5.11 Keyboard Shortcuts
	5.11.1 List of Keyboard Shortcuts:

	5.12 ARGEE PRO Menu Bar
	5.12.1 Debug (ARGEE PRO)
	5.12.2 Print
	5.12.3 IO Config (I/O Configuration)
	5.12.4 HMI
	5.12.5 Project
	5.12.6 Edit Code
	5.12.7 Delete Project
	5.12.8 Run Without Source
	5.12.9 ARGEE PRO Advanced Mode

	6 ARGEE PRO Advanced Mode
	6.1 The Basics
	6.2 Function Block Types
	6.2.1 Regular
	6.2.2 Task (Multitasking)

	6.3 Wait Until

	7 Debugger
	7.1 Debugger Information
	7.1.1 Single Task
	7.1.2 Multiple Tasks
	7.1.3 Break Points
	7.1.4 Trace
	7.1.5 Order of Operation – Calls & Function Blocks

	7.2 Debug Menu Bar (ARGEE PRO)
	7.2.1 Halt
	7.2.2 Step
	7.2.3 Continue
	7.2.4 Modify Vars (Modify Variables)
	7.2.5 Finish Modifications

	8 ARGEE Simulation Mode
	8.1 Opening the Environment
	8.2 Logging into Simulation Mode
	8.3 Selecting Device to Simulate
	8.3.1 Flow Chart Simulation Mode
	8.3.2 Pro Simulation Mode

	9 ARGEE HMI
	9.1 The Basics
	9.2 HMI Screen
	9.2.1 Sections
	9.2.1.1 Display Number/State/String
	9.2.1.2 Display Number with Valid Range
	9.2.1.3 Enter Number/String
	9.2.1.4 Enter State
	9.2.1.5 Submit Action

	9.3 HMI Grid Screen
	9.3.1 HMI Grid Screen
	9.3.2 Grid Row
	9.3.3 Grid Cell
	9.3.4 Grid Element
	9.3.4.1 Display Value
	9.3.4.2 Enter Value
	9.3.4.3 Button
	9.3.4.4 Static Text
	9.3.4.5 Screen List
	9.3.4.6 Static Graphics
	9.3.4.7 Multi-State Display String
	9.3.4.8 Multi-State Display Graphics
	9.3.4.9 Dropdown List
	9.3.4.10 Display Value with Health
	9.3.4.11 Link

	9.4 HMI Image Group
	9.5 HMI Formatting Tips
	9.5.1 Cell Spacing in a HMI
	9.5.2 Row Spacing in a HMI

	10 PLC Connectivity
	10.1 Communicating with EtherNet/IP Master – RSLogix5000 / Studio5000
	10.2 Communicating with a PROFINET Master – SIMATIC STEP 7
	10.3 Communicating with a Modbus TCP/IP Master – Crimson 3
	10.4 Communicating with a Turck PLC or TX500 Series HMI – CODESYS 3
	10.4.1 EtherNet IP
	10.4.2 PROFINET
	10.4.3 Modbus TCP/IP

	11 Appendix I - Definitions
	11.1 Built-in Functions (Ctrl-f)
	11.2 Built-in Functions Menu
	11.2.1 Strings/Arrays
	11.2.1.1 String Length
	11.2.1.2 String Left
	11.2.1.3 String Right
	11.2.1.4 String Middle
	11.2.1.5 String Copy
	11.2.1.6 String Concatenate
	11.2.1.7 String Compare
	11.2.1.8 String to Integer
	11.2.1.8.1 String to Integer - Base 2 – Binary
	11.2.1.8.2 String to Integer - Base 8 – Octal
	11.2.1.8.3 String to Integer – Base 10 – Decimal
	11.2.1.8.4 String to Integer – Base 16 – Hexadecimal

	11.2.1.9 Integer to String
	11.2.1.9.1 Integer to String – Base 2 – Binary
	11.2.1.9.2 Integer to String – Base 8 – Octal
	11.2.1.9.3 Integer to String – Base 10 – Decimal
	11.2.1.9.4 Integer to String – Base 16 – Hexadecimal

	11.2.1.10 Array Initialize

	11.2.2 Timer
	11.2.2.1 Start Timer
	11.2.2.2 Timer Expired
	11.2.2.3 Timer Count

	11.2.3 Counter
	11.2.3.1 Counter Expired
	11.2.3.2 Counter Count

	11.2.4 Math
	11.2.4.1 Addition
	11.2.4.2 Subtraction
	11.2.4.3 Multiplication
	11.2.4.4 Division
	11.2.4.5 Modulo
	11.2.4.6 Absolute Value
	11.2.4.7 Minimum Value
	11.2.4.8 Maximum Value

	11.2.5 Brackets
	11.2.6 Boolean Logic
	11.2.6.1 Boolean AND
	11.2.6.2 Boolean OR
	11.2.6.3 Boolean NOT

	11.2.7 Compare
	11.2.7.1 Greater Than
	11.2.7.2 Greater Than or Equal to
	11.2.7.3 Less Than
	11.2.7.4 Less Than or Equal to
	11.2.7.5 Equal
	11.2.7.6 Not Equal

	11.2.8 Trigger
	11.2.8.1 Change of State (F_COS)
	11.2.8.2 Rising Edge Trigger (R_TRIG)
	11.2.8.3 Falling Edge Trigger (F_TRIG)

	11.2.9 Bit Operations
	11.2.9.1 Get Bits
	11.2.9.2 Set Bits

	11.2.10 Advanced IO/PLC Array
	11.2.10.1 Get IO Input Integer
	11.2.10.2 Set IO Output Integer
	11.2.10.3 Set IO Parameters Integer
	11.2.10.4 Get IO Diagnostics Integer
	11.2.10.5 Get IO Input Array
	11.2.10.6 Set IO Output Array
	11.2.10.7 Get IO Diagnostics Array
	11.2.10.8 Get PLC Input Array
	11.2.10.9 Set PLC Output Array
	11.2.10.10 Write Data Stream
	11.2.10.11 Read Data Stream

	11.2.11 Protocol Conversion
	11.2.11.1 Little-endian, Get 16 Bits
	11.2.11.2 Big-endian, Get 16 Bits
	11.2.11.3 Little-endian, Get 32 Bits
	11.2.11.4 Big-endian, Get 32 Bits
	11.2.11.5 Little-endian, Set 16 Bits
	11.2.11.6 Big-endian, Set 16 Bits
	11.2.11.7 Little-endian, Set 32 Bits
	11.2.11.8 Big-endian, Set 32 Bits

	11.3 ARGEE Security Features
	11.3.1 Visual Behavior
	11.3.2 Connection Behavior
	11.3.2.1 EtherNet IP Master
	11.3.2.2 Modbus TCP Master
	11.3.2.3 PROFINET Master

	11.3.3 Password Protection – ARGEE Environment
	11.3.4 Source Code Protection – Run Without Source

	11.4 System Performance
	11.4.1 Scan Cycle Information
	11.4.2 IO Variable Formats
	11.4.3 Defining Variable Types – (Advanced Definitions)

	11.5 I/O Variable Definitions
	11.5.1 Slot “0” Diagnostics Definitions
	11.5.2 Slot 1 or 2 Input Definitions
	11.5.3 Slot 1 or 2 Output Definitions

	12 Appendix II – Example Code
	12.1 How to Erase a Project from a Device
	12.1.1 Running an empty Project
	12.1.2 Using the Webserver Page
	12.1.3 Using the Turck Service Tool

	12.2 Trace Example
	12.3 How to Call a Function Block
	12.4 Creating and Importing Structure Text (ST View)
	12.4.1 Example of Exporting an ARGEE Project as Structure Text
	12.4.2 Example of Importing Structure Text and Converting it into an ARGEE Project.

	12.5 How to Export a CSV File
	12.5.1 HMI export of arrays
	12.5.2 Example of Exporting a CSV

	12.6 Advanced Application Examples
	12.6.1 Working with IO-Link
	12.6.1.1 Working with IO-Link
	12.6.1.2 Acyclic Communication – Read
	12.6.1.3 Acyclic Communication – Write

	12.6.2 Working with RFID
	12.6.2.1.1 RFID Communication – Read
	12.6.2.1.2 RFID Communication – Write
	12.6.2.1.3 RFID Communication – Strings
	12.6.2.1.3.1 Example of RFID Communication – Writing Strings
	12.6.2.1.3.2 Example of RFID Communication – Reading Strings

	12.6.3 Working with Analog
	12.7 Advanced Analog Example – Inclinometer

	12.7.1 Working with Encoders
	12.7.2 Working with State Variables
	12.7.2.1 State Machine
	12.7.2.2 State Variables

	12.7.3 Working with User-Defined Data Types
	12.7.3.1 Referencing Internal Function Block Variables
	12.7.3.2 User-Defined Data Types as Arguments to other Function Blocks

	12.7.4 Working with Hex Values
	12.7.5 Advanced Bitwise Operations – Bit Masking
	12.7.5.1 What are Bitwise Operations?
	12.7.5.2 What is Bit Masking?
	12.7.5.3 Example of Bit Masking

	12.7.6 Nesting Function Blocks
	12.7.7 Advanced HMI Example – Tank monitoring with graphics

	13 Appendix III – Libraries
	13.1 MISC
	13.1.1 MISC_wait_ms
	13.1.2 MISC_array_to_string
	13.1.3 MISC_sort
	13.1.4 MISC_filter_sample_into_array
	13.1.5 MISC_reset_filter
	13.1.6 MISC_NUMBER_st
	13.1.7 MISC_copy_byte_to_array
	13.1.8 Float_to_String

	13.2 Technology
	13.2.1 BLCEN_RFIDS_Routines
	13.2.2 BLCEN_RFIDS_Read
	13.2.3 BLCEN_RFIDS_Write
	13.2.4 TBEN_S2_RFID_READ
	13.2.5 TBEN_S2_RFID_WRITE
	13.2.6 TBEN_IOL_AsyncRead
	13.2.7 TBEN_IOL_AsyncWrite

