B1N360V-QR20-IOLX3-H1141 Inclinometer

Technical data

Type	B1N360V-QR20-IOLX3-H1141
ID	100025084
Measuring principle	Acceleration
General data	
Measuring range	0...360 ${ }^{\circ}$
Number of measuring axes	1
Repeat accuracy	$\leq 0.05 \%$ of full scale
Linearity deviation	≤ 0.2 \%
Temperature drift	$\leq \pm 0.006 \% / \mathrm{K}$
Resolution	$\leq 0.01^{\circ}$
Electrical data	
Operating voltage	18... 30 VDC
Residual ripple	$\leq 10 \% \mathrm{U}_{\text {ss }}$
Isolation test voltage	$\leq 0.5 \mathrm{kV}$
Wire breakage/Reverse polarity protection	yes
Communication protocol	IO-Link
Current consumption	< 50 mA
IO-Link	
Communication mode	COM 3 (230.4 kBaud)
Minimum cycle time	1.3 ms
Function pin 4	IO-Link
Mechanical data	
Design	Rectangular, QR20
Dimensions	$71.6 \times 62.6 \times 20 \mathrm{~mm}$

Features

Rectangular, plastic, Ultem
\square Status displayed via LED
Angle detection via one axis with 360° measuring range
Temperature detection from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

- High protection class IP68/IP69K
- Protected against salt spray and rapid temperature change
18... 30 VDC

M12 $\times 1$ connector, 4-pin
■ommunication via IO-Link

Wiring diagram

Functional principle

The inclinometers use an acceleration measuring cell to determine the angle. The Earth's gravity is used as a reference. If the inclinometer changes its angle relative to the Earth's gravity, this is detected by the

Technical data

Housing material	Plastic, Ultem
Electrical connection	Connector, M12 $\times 1$
Environmental conditions	
Ambient temperature	$-40 \ldots+85{ }^{\circ} \mathrm{C}$
Temperature changes (EN60068-2-14)	$-40 \ldots+85^{\circ} \mathrm{C} ; 20$ cycles
Vibration resistance (EN 60068-2-6)	$20 \mathrm{~g} ; 5 \mathrm{~h} / \mathrm{axis} ; 3$ axes
Shock resistance (EN 60068-2-27)	$150 \mathrm{~g} ; 4 \mathrm{~ms} 1 / 2$ sine
Protection class	IP68
	IP69K
MTTF	548 years acc. to SN 29500 (Ed. 99) 40
	${ }^{\circ} \mathrm{C}$
Power-on indication	LED, Green
Measuring range display	LED, yellow

Mounting instructions

acceleration measuring cell. The signal is then linearized so that a value proportional to the angle is output.
The measuring principle used makes mounting and commissioning the device easy. The robust sensors are positioned with the cast side on a flat surface so that the casting compound is covered. The sensor is then secured with two screws.
The sensor can also record the temperature, which can be used to monitor the condition of the machine.

Mounting instructions/Description

Accessories

The measuring principle enables simple mounting and commissioning, for example because a metal environment does not interfere with the measuring principle.
A green LED indicates whether the sensor is being supplied properly. The green flashing LED indicates that IO-Link communication is active.
One yellow LED per inclination axis acts as a zero position indicator to aid commissioning. It is constantly illuminated when the position of the inclinometer is in a window of $\pm 0.5^{\circ}$ around the center point. The LED flashes with increasing frequency the more the sensor approaches the center point position.

Wiring accessories

